

Abstract —As the evolution of computer technology introduces

new advances in networks (among others), online gaming
becomes a new trend. Following the trends of our era, Games At
Large introduces an innovative platform for running interactive,
rich content multimedia applications over a WAN Network.
Games@Large project’s vision is to provide a new system
architecture for Interactive Multimedia which will enhance
existing CE devices such as, Set Top Boxes (STB) and other
devices, which are lacking both the CPU power and the graphical
performance to provide a rich user experience. This paper
presents the controllers’ sub-system of the innovative mechanism
that will be implemented in the context of Games at Large
project. More specifically, it presents the general architecture of
the complete system and focuses on the “capturing” and
“execution of commands” modules at the client and server side.
The client software captures the input from the input devices,
sends the commands over a WAN and the server is responsible
for receiving and executing the commands to the correct
application.

Index Terms—remote control, online gaming, remote
command execution, input device capturing

I. INTRODUCTION
OMPUTER games constitute nowadays one of the most
dynamic and fastest changing technological area, both in

terms of market evolution and technology development [1]. In
this area, as the computer games are evolving and online
activities and gaming become parts of our life, the need of
interaction within a client – server architecture becomes very
intense. In this document we present a mechanism for
transferring input commands from any device, acting as the
client, to execution commands at the corresponding program
of the server. The purpose of this mechanism is to be able to
control a program that runs on the centralized server from a
remote operating system. This mechanism is created within
the scope of the Games at Large project. Meeting the demand
of highly interactive multimedia systems with low cost end
devices (CE), requires a radical change in the system’s
architecture. Games@Large project intends to design a
platform for running interactive rich content multimedia
applications. Games@Large vision is to provide a new system
architecture for Interactive Multimedia which will enhance
existing CE devices such as, Set Top Boxes (STB) and other
devices which are lacking both the CPU power and the
graphical performance, to provide a rich user gaming
experience.

In this paper we present the general architecture of the sub-

system that controls the input of the devices and their server
side execution. More specifically, we examine how, input is
able to be captured by any input device, commands are sent
over the network and finally, commands are executed at the
target software of the server.

II. GAMES AT LARGE
The Games@LargeF

1
F mission is to develop a new method

for ubiquitous video games through unique technology to
transfer graphical data while reducing latency and ensuring
QoS in a cost-effective manner. Main focus will be given on
studying and supporting the use of video games within four
different focus areas: User’s home, Hotels, Internet Café,
Elderly Houses. A multi-layer approach will cut horizontally
across the Games@Large focus areas, aiming to assess the
conditions under which a Games@Large platform may frame
within and improve the state of the art of each business
domain, through performing the following, logically
consecutive activities: collecting user requirements,
researching and developing common Technologies,
implementing and integrating those technologies within the
required Servers and prototype CE Devices, running
technology verification and Training and evaluating all results.

III. GENERAL ARCHITECTURE

Figure 1: System General Architecture

The Games@Large system architecture scheme is depicted
in Figure. 1. It consists of the service provider side, on the left,
and the end-users’ side, which are connected through a
broadband distribution network (the Internet). The

1 Games@Large Project, IST-1-038453-IP, Funded by EU,
http://www.gamesatlarge.eu

“Input here – Execute there” through networks:
the case of gamingX

1
X

Christos Bouras Vassilis Poulopoulos Ioannis Sengounis Vassilis Tsogkas
Research Academic Computer Technology Institute, Riga Feraiou 61, 26221, Patras, Greece

Computer Engineering and Informatics Department, University of Patras, 26500, Rion, Greece
bouras@cti.gr poulop@cti.gr jns@sch.gr tsogkas@cti.gr

C

infrastructure for end-user environment will be formed by the
wireless LAN (802.11 a/g/n or other methods to be
investigated within the project). This local network connects
devices that are involved in the multimedia chain, either as
media storage/processing servers, or as consumer user
terminals [2].

IV. CLIENT SIDE AND SERVER SIDE
The infrastructure that we are developing, as depicted in

figure 2, executes the following procedure:
 Registers the input controllers on the client side.
 Captures all input from the controller devices.
 Formats input in the appropriate style for

transferring.
 Transfers the controller’s input to the server using a

socket connection.
 Executes the input commands locally on the server.

Figure 2: Graphical representation of the input

controller’s data transmission
When the client program starts, it initiates the device

discovery procedure, which may be offered either by a
separate architectural module, e.g. the device discovery
module which uses UPnP, or by a system call causing the
discovery for input devices attached to the system. It is
essential afterwards, that the results of the device discovery
are registered in our program so that we are aware of the
existing input devices marking out several other non-existing.
The next step of the procedure is to capture the input coming
from the input controllers. This is achieved by recording the
key codes coming from the input devices. Input devices such
as mice or keyboards are interrupt-driven while with joysticks
or joy pads the polling method is used for reading. The
previous means that whenever an input event is caused by a
keyboard or a mouse, an interrupt message is sent to the
message queue of our program; then it is translated and finally
recorded. However, the polling case of joysticks or joy-pads
means that these devices have to be polled by a program's
thread in order to sense motion or button presses. The polling
period has to be small enough to capture any input, but not too
small to monopolize the system's CPU. A period of 10ms
seems to be a wise trade off.

After an input key code has been captured, the transmission

of it takes place. This is achieved using an already open socket
connection with the server side. Data is transmitted through
the socket in the form of a string with a certain communication
protocol.

The socket connection can either be of TCP or UDP
protocol. Since UDP emphasizes on real time, low latency
transmission, it is preferable for this transmission. Even if
some key codes are lost in the process of transmitting them
over the network, there is no real loss since there is a flow of
key codes that can overcome this possible threat. However, in
real life, error prune networks, such as WiFi's, the TCP
protocol is preferred avoiding the possible game experience
fall caused by lost controller's packets transmission.

Since the key codes have arrived at the server side, they are
executed at the running game instance. At this point, there
needs to be a distinction between the different types of
transmitted key codes. There are basically three types of
possible input device’s data transmission. Commands may be
coming from: (a) keyboard, (b) mouse, (c) joystick / joy-pad
device or (d) any other HID input device.

In the first case, the server has to recognize the virtual key
code, or the “pressed” / “released” event of a keyboard button,
then do a possible mapping to some other key code, based on
the game and user profile, and finally deliver it to the active
application window for execution.

In the case of mouse input, the server has to recognize the
virtual key code or the “pressed” / “released” event of a mouse
button, recognize any mouse wheel event or any mouse
movement (absolute or relative), then do a possible mapping
to some other key code, based on the game and user profile,
and finally deliver the key code to the active application
window for execution.

In the case of joystick/joy-pad input, the server recognizes
the state of the joystick/joy-pad device, maps the state to the
appropriate keystrokes using the xml – mapping file of the
particular game-joystick/joy-pad combination. In this way, we
are able to emulate the joystick/joy-pad input using pure
keystrokes–mouse movements that represent the actual
behavior of the input device. Finally the key code is delivered
to the active application window for execution.

For any other HID input device the system treat the input
similarly to the joystick/joy-pad. The only prerequisite is the
existence of a mapping file in order to convert the commands
to keyboard and mouse instructions..

REFERENCES
[1] G. O. Young, “Synthetic structure of industrial plastics (Book style with

paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New
York: McGraw-Hill, 1964, pp. 15–64.

[2] Y. Tzruya, A. Shani, F. Bellotti and A. Jurgelionis. “Games At Large: A
new platform for ubiquitous gaming”, BroadBand Europe 2006, Geneva,
Switzerland, December 11 – 14, 2006

[3] “Games at Large: Project Summary”, 20 December 2006,
http://www.gamesatlarge.eu

