QoS in GMPLS based IP/DWDM Metro Networks

W Colitti, K. Steenhaut, and A. Nowé
Dept. of Electronics and Informatics (ETRO) and Computational Modeling Lab (COMO)
Outline

- Evolution
- IP over optical networks
- GMPLS QoS problem in optical networks
- Proposed scheme for integrated QoS control
- Simulation study
- Conclusions and future works
Evolution

- Traffic dominated by IP services
 - DSL, cable modem, Ethernet passive optical networks
 - Unpredictable

- New network infrastructure is needed
 - Multi service to increase ROI
 - Self-adaptivity to replace the traditional overprovisioning

- Migration from SONET/SDH rings to DWDM mesh networks
 - Lower CAPEX
 - OPEX reduced by the GMPLS distributed control plane and MTE paradigm
 - Tight IP/DWDM layers integration
IP over DWDM mesh networks

- **DWDM technology**
 - Users traffic multiplexed on different wavelengths
 - Fibers reach Terahertz of capacities

- **Physical optical topology**
 - Optical Add/Drop Multiplexers (OADMs)
 - Wavelength add/drop/bypass
 - Optical Cross Connects (OXC)
 - Lightpaths

- **Logical (virtual) IP topology**
 - IP electronic routers
 - Set of lightpaths

- **Multilayer Traffic Engineering**
 - IP load balancing in the IP layer
 - Lightpath establishment when high load
 - Dynamic virtual topology reconfiguration
Generalized MPLS control plane

- MPLS for unloading IP routers
 - Label switching replaces traditional routing
- From MPLS to GMPLS
 - Packet, TDM, Wavelength, Fiber
 - Wavelength replaces the notion of label
- IP/DWDM integration
 - Nodes with two switching technologies
 - Network with Unique Traffic Engineering Database (TED)
 - Better resource utilization
- DiffServ at IP/MPLS layer
 - Classes of Service in IP
 - Different LSPs for different CoS
- DiffServ at optical layer
 - Virtual topology differentiation
QoS in GMPLS IP/WDM networks

- IP traffic divided in CoS
 - Expedited Forwarding (EF)
 - Assured Forwarding (AF)
 - Best Effort (BE)

- Different LSPs for different CoS
 - EXP-inferred LSP (E-LSP)
 - Label-inferred LSP (L-LSP)

- Traffic re-aggregated in WDM

Multilayer Differentiation needed
Virtual topology differentiation

- First differentiation based on lightpath quality
 - Bit Error Rate (BER), delay, jitter
 - Protection

- Several virtual topologies
 - OLSPs are advertised as an FA with a certain grade of quality
 - Set of FAs with the same quality form an independent VT

- Different strategies for different virtual topologies
 - Routing/grooming policies
 - Reconfiguration frequency, rerouting, etc.
Simulation study

- 21 nodes, 36 fibers
- 12 wavelengths from OC-1 to OC-192
- 10^6 connection requests according to Poisson distribution
- 40% EF and 60% AF traffic
- Capacity uniformly distributed
- Sources-destinations uniformly distributed
- OMNET++ simulation tool
Benefits of integrated IP/DWDM

![Graph showing blocking probability vs traffic load (Erl)]
Multilayer DiffServ

![Graph showing blocking probability vs traffic load for EF and AF Traffic]
Multilayer DiffServ (2)

The diagram shows the average OLSP impairment for EF and AF traffic as a function of traffic load (Erl). The impairment values for EF traffic remain relatively constant across the range of traffic loads, whereas AF traffic shows a slight increase in impairment as the traffic load increases.
Signaling traffic

Signaling traffic load

Traffic load (Erl per node)

OSPF-TE messages

VT_Diff

No VT_Diff
Conclusions

- GMPLS IP/DWDM networks solution for new generation networks
 - Low CAPEX and OPEX
 - Better blocking probability and resource usage
- DiffServ in GMPLS needed to support QoS
 - Higher RoI
- Scheme for QoS IP/WDM GMPLS networks
 - LSPs differentiation in MPLS domain
 - OLSPs differentiation
- Improvements
 - Qos traffic for high priority
 - Performance when integrated domains
Thank you for your attention!