Introduction

- Transmit power control in wireless networks
 - Mitigates multiple access interference
 - Conserves battery life in mobile terminals
- Distributed power control for ad hoc networks
 - Classical algorithm by Foschini & Miljanic’93
 - Fully distributed, but not backlog aware
 - PCRA by Bambos & Kandukuri’00
 - Backlog aware, but assumes unresponsive interference
- This talk … distributed, backlog aware power control, responsive to interference
 - Focus on stochastic control aspects
System Model

\[\gamma_1 = \frac{P_1 G_{11}}{P_2 G_{21} + \sigma^2} \]

\[\gamma_2 = \frac{P_2 G_{22}}{P_1 G_{21} + \sigma^2} \]

- Slotted time
- \(L \) transmit power levels
- Probability of successful transmission – function of SINR
- Change power by at most one level in every time slot

Practical considerations
Centralized Power Control

- Buffer draining problem
 - Can incorporate Markovian arrivals
- Backlog costs per time slot (convex)
- **Objective** – Minimize total backlog cost incurred in draining queues
- Power assignment based on
 - Backlog information
 - SINRs from previous time slot
- Stochastic shortest path problem
 - Dynamic programming
Centralized Power Control …

- **Provable** structural properties
- **Load balancing effect**
 - Opportunistic behavior
- **What is missing?**
 - Distributed decision making
 - Scalability
- **Oracle** is a benchmark for performance evaluation

Snapshot of optimal policy (Oracle)

x increase o maintain + decrease
Distributed Power Control

- **Coupling** induced by broadcast nature of wireless medium
- **Decouple** – study every link in isolation
- Capture interaction through **power cost**
 - Penalty for “stressing” the shared wireless environment
 - Introduces **power vs. backlog tradeoff**

July 9, 2007
Distributed Power Control …

- Solve three different buffer draining problems for single link under the assumptions:
 - Interference will always decrease – BACK (back-off)
 - Interference will always increase – AGGR (aggressive)
 - Interference will stay fixed – STAT (static)

- **Objective** – Minimize total backlog cost plus power cost incurred in draining queue
- Dynamic programming formulation
- One look up table for each problem
The BDD Power Control Algorithm

- Compute 3 look up tables BACK, AGGR, and STAT offline at each link.

- Given current backlog and interference from previous time slot:

 - Choose action from table:

 \[
 \begin{align*}
 \text{BACK} & \quad w.p. \quad \beta_1 \\
 \text{AGGR} & \quad w.p. \quad \beta_2 \\
 \text{STAT} & \quad w.p. \quad 1 - \beta_1 - \beta_2 \\
 \end{align*}
 \]

- Observe interference \((i)\) in current time slot:

 \[
 \begin{array}{ccc}
 i \downarrow & \beta_1 \uparrow & \beta_2 \downarrow \\
 i \uparrow & \beta_1 \downarrow & \beta_2 \uparrow \\
 i \leftrightarrow & \beta_1 \downarrow & \beta_2 \downarrow \\
 \end{array}
 \]

- \(\beta_1\) = Fraction of time interfering links back off – interpret as probability.
The BDD Power Control Algorithm …

- Generalizes to multiple links
- Only aggregate interference from other links matters
 - Conceptually, other links behave as one *mega link*
- Can adapt to changes in topology through β_1 and β_2
 - No need to re-compute look up tables as other links come and go
- Look up tables re-computed only when self link gain changes
 - Reasonable under slow mobility
Performance Evaluation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation length</td>
<td>10000 time slots</td>
</tr>
<tr>
<td>Channel gains</td>
<td>$G_{11} = G_{22} = 1, G_{12} = G_{21} = \frac{1}{2}$</td>
</tr>
<tr>
<td>Success probability mapping</td>
<td>$s(\gamma) = 1 - \exp(-\gamma)$</td>
</tr>
<tr>
<td>Number of transmit power levels</td>
<td>$L = 8$</td>
</tr>
<tr>
<td>Backlog costs (Oracle and BDD)</td>
<td>$\phi(b) = b$</td>
</tr>
<tr>
<td>Power costs (BDD only)</td>
<td>$\zeta(l_1 - l_2) = l_1 - l_2$</td>
</tr>
</tbody>
</table>
Performance Evaluation …

Bernoulli traffic

- 20-30 % gain in throughput over power control with fixed SINR targets
- Similar results for other traffic types (e.g., Poisson)
- Performance of BDD and Oracle similar

Markov modulated Bernoulli traffic (bursty)
Performance Evaluation ...

Convergence
Bernoulli – $p_1 = 0.8$, $p_2 = 0.4$

Power vs. Backlog tradeoff
Bernoulli – $p_1 = 0.6$, $p_2 = 0.6$
Conclusions

- Centralized power control – Oracle
 - Load balancing effect

- Distributed power control – BDD
 - Decouple links for analysis – capture interaction through “power costs”
 - More generally applicable (e.g., buffer management for media streaming)
 - Mimics load balancing effect
 - Scalable

- Ongoing work – multilink simulations, theoretical aspects, protocol aspects
Thank You!

Contact: {dua, bambos}@stanford.edu
Introduction …

- A distributed PC algorithm – FM’93
 - Fixed SINR targets
 - Infinitely backlogged sources
 - “Fights” the interference

- Another distributed PC algorithm – BK’00
 - Probability of success – function of SINR
 - Backlog aware
 - Assumes unresponsive interference
 - “Befriends” the interference

- This talk … *distributed, backlog aware power control, responsive to interference*
 - Focus on structural / control aspects