Optimizing Operation of a Hierarchical Campus-wide Mobile Grid for Intermittent Wireless Connectivity

Konstantinos Katsaros and George C. Polyzos

Mobile Multimedia Laboratory Department of Computer Science Athens University of Economics and Business

Outline of Talk

- Motivation
- Related Work
- Proposed Architecture
- Evaluation Framework
- Results
- Conclusions & Future Work

Motivation

- Grid computing *paradigm*
 - "...coordinated resource sharing and problem solving in dynamic, multiinstitutional virtual organizations."
 - Large-scale distributed system designed to aggregate resources from multiple sites.
 - Strong interest of the scientific community
- Mobile computing *paradigm*
 - Enormous number of mobile computing devices
 - Resource limitations (e.g. CPU, storage, power) but...
 - ... increasingly becoming more powerful!
- Merging the two *paradigms*
 - What should be the nature of such merge?

Related Work

• Mobile Devices as Resource Consumers

- Access to fixed Grid infrastructure
- *Target:* Provide the missing resources
- Problems due to mobility, wireless interface, heterogeneity
- Proposed solution: *proxies/mediators act* on behalf of the *Mobile Node* (MN)

• Mobile Devices as Resource Providers

- Enormous number of increasingly powerful mobile devices
- *Target:* Aggregate all these scattered resources
- Same problems remain
- *Mobile Grids On-Site (Infrastructure mode)*
 - Aggregation of resources residing in a Service Area (SA), e.g. WLAN, cell.
 - Central co-ordination: service discovery, job splitting, task assignment, monitoring etc.
- Mobile Ad-Hoc Grids
 - Completely distributed
 - Further problems: No central co-ordination, Network partitioning, Multi-hop routing
 - Proposed solution: *virtual backbone i.e.* more powerful MNs act as coordinators

Proposed Architecture (1/2)

- Mobile Grid On-Site approach
- Mobile Grid Schedulers (MGSs)
 - Receive a job from the upper level ...
 - ...decompose it into tasks and ...
 - …assign tasks to lower levels
 - Receive & combine the results
 - Propagate information on available resources upwards
- Root-MGS (R-MGS)
 - Can receive job submissions from outside the campus
- Intermediate-MGS (I-MGS)
- Local-MGS (L-MGS)
 - Serving a WLAN
 - Assigns tasks to MNs
 - Can also receive job submissions from MNs

Proposed Architecture (2/2)

- Jobs submissions may be propagated upwards
- Results may be returned from a different point of attachment
- Hierarchical structure
 - Divide-and-conquer approach
 - Levels of abstraction
 - Load balancing
- Campus-wide
 - Large number of MNs
 - E.g. ~6200 distinct MAC addresses recorded at Dartmouth campus
 - Central administration

Incentives

- Why should Mobile Nodes share their resources?
 Reciprocity
 - A mobile node is allowed to submit a job only if it offers its own resources a well
 - MNs take advantage of the aggregated resources
- Why not each MN compute its own jobs?
 - A whole job may require resources not available in a single MN
 - In a certain period of time:
 - Offered resources << Required resources
 - Small amounts of resources offered by several MNs
 - Taking advantage of the parallel character of task execution
- Fairness issues (e.g. *free-riding*) demand for an *accounting* mechanism

Evaluation Framework

- *Divisible Load* applications: the load of computation can be divided in several independent parts
- Three-step process: $T_{TOTAL} = T_{IN} + T_{EXEC} + T_{OUT}$
- Communication to Computation Ratio (CCR):

 $CCR = \frac{CommunicationCost}{ComputationCost}$

- Performance depends on the actual Response Time (RT)
- Intermittent connectivity imposes delays on T_{IN} and T_{OUT}

$$Overhead = \frac{RT - T_{TOTAL}}{T_{TOTAL}} * 100\%$$

- On the utilized trace set (Kotz et al.):
 - Mean connection time: 16.6 minutes,
 - 71% less than 1 hour,
 - 27% less than 1 minute!
- However, there is a distinction between disconnection and failure.

Task Replication

- Assigning the same task to more than one MNs in the same WLAN
 - Not all MNs present the same networking behavior
 - Some will eventually return the results earlier than the others
- Resource waste
 - Resources on MNs performing worse
- Tradeoff:
 - The greater the extend of task replication the larger the size of the task
 - Probability of disconnection increases

Traces

- WLAN mobility traces from the Dartmouth University campus
- In the form of : (MN, AP, timestamp)
 - Special AP name for disconnection: "OFF"
- Collected from April 2001 to March 2003
- Subset used due to "holes":
 - Duration: 01January 2002 March 2003
 - 5982 distinct MAC addresses
 - 566 APs
 - 166 buildings
- Almost 1000 testing environments i.e. <time, AP>
 - Uniformly distributed across the trace set

Results: Delay Overhead (1/2)

- Low overhead for very low input loads
 - Process completes before disconnection
- Dramatic increase
 - Disconnections during data transfer
 - $\circ \quad \text{Low } \mathtt{T}_{_{\mathrm{TOTAL}}}$
- Overhead decreases for higher input loads
 - Computation step compensates for disconnection

Overhead for high CCR values

- Load measured in *time* units (seconds)
 - No information on the actual throughput
 - More general framework

•
$$T_{IN} = T_{OUT}$$

Results: Delay Overhead (2/2)

- For low input load: 210% 340% overhead
 - Low T_{TOTAL}
- Low CCR values result in higher ${\rm T}_{\rm _{TOTAL}}$
 - Probability of disconnection during transmission of the results increases
- For low input volumes, lower CCR values result in lower overhead
 - Computation during disconnection
- As the input volume increases, higher CCR values become preferable
 - \circ Lower $\mathbb{T}_{_{\mathrm{TOTAL}}}$ and lower probability of disconnection

Overhead for low CCR values

Results: Task Replication (1/3)

- Extend of replication subject to number of MNs co-residing in a WLAN
 - On average: 4 MNs, in the utilized set of traces
 - Hence, task replication for 2 groups of MNs in a WLAN (*GROUPS case*)
- Performance compared to the "no replication" scenario (NO GROUPS case), in terms of:
 - Overhead (compared to the performance of a single MN...)
 - Percentage of success scenarios...

Results: Task Replication (2/3)

- Superior performance for the GROUPS case
 - GROUPS case leverages the parallel character of task execution (28% performance gain on average)
 - NO GROUPS case incurs an overhead of 57% on average
 - Worse for high CCR values due to limited compensation of disconnection periods with computation

Performance gains by Task Replication scheme

• For various T_{IN} values (5-200 sec) • $T_{IN} = T_{OUT}$

Performance Gain: RT vs. T_{TOTAL}

Results: Task Replication (3/3)

- In the vast majority of the testing environments the *RT* of the *NO GROUPS case* is lower.
 - Due to the increased (i.e. double) task size in the GROUPS case
 - As the total load increases (lower CCR values), a slight increase is noticed in the percentage of preferred GROUPS case testing environments

Percentage of success scenarios

Conclusions & Future Work

- A hierarchical campus-wide networking environment seems a realistic context for Mobile Grid
- Processing step can *hide* mobility problems
- Task replication: promising technique for heavy load/instable application/networking environments.
- Detailed *incentives* scheme and *accounting* mechanism
- Load balancing throughout the MGS hierarchy
- Modeling of MN's networking behavior
 - Target: Expected Response Time
 - Valuable input for L-MGSs: MN selection, Job decomposition: task size

Thanks!

Questions ?

Konstantinos Katsaros

Mobile Multimedia Laboratory Department of Computer Science Athens University of Economics and Business

ntinos@aueb.gr

http://mm.aueb.gr/