Error Handling for Video over IP

Mod Marathe
Cisco Distinguished Engineer
Error Handling Approaches

- Retransmission
- Forward Error Correction (FEC)
- Stream redundancy with path separation
- Loss concealment
Retransmission

- TCP already has retransmission however it also includes congestion control and packet loss is built into the protocol.
- TCP is not usable for broadcast video but can be used for non-real time transferring of large video content files.
- Better alternative for broadcast video is RTP (real time protocol) which has NACK-based retransmission but no congestion control.
- Even RTP gets complicated when using multicast video.
- Retransmission based recovery would work best on a single point-to-point subscriber link when the transmission delay is small (~10 ms).
Forward Error Correction (FEC)

- Physical layer FEC uses Reed-Solomon or Trellis codes for correcting random errors and short bursts.
- Higher level FEC uses packet erasure correction.
- Basically sending extra “repair” packets after sending a block of data packets.
- Each repair packet contains XOR of a subset of data packets.
- Block of data can be recovered if a few more packets than the number of original data packets are received from the combined set.
- Extra bandwidth required ~equal to the maximum packet loss to be protected against.
- Fixed bandwidth requirement – works well for multicast and unicast.
- Can be used to recover from long outages (~200ms) by choosing a larger source block size.
Pro MPEG Forum CoP3 1D FEC
Good For Low Random Loss Due to BER

- Source block composed of LxD source packets numbered in sending order
 - \(L \times D \leq 100 \)
 - \(1 \leq L \leq 20 \)
 - \(4 \leq D \leq 20 \)
- Each repair packet is the XOR of the packets in a column
- Overhead = \(\frac{L}{L \times D} \)
- 5% Overhead for \(L = D = 20 \)
Pro MPEG Forum CoP3 2D FEC
Good For High Random Loss Due to BER

- Source block composed of $L \times D$ source packets
- Repair packets calculated across rows as well as columns
- XOR Function Used to create repair Packets
- Overhead $= \frac{L + D}{L \times D}$

D rows

L columns

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F'0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>F'1</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>F'2</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>F'3</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>F'4</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>F'5</td>
</tr>
</tbody>
</table>

repair (parity) packets
Stream redundancy with path separation

- Send traffic twice to different multicast groups (eg: green = 232.1.0.1, red = 232.1.0.2)
- Use path separation in network to pass red/green across different paths
- Receivers receive both copies, remove duplicates by sequence numbers (eg: MPEG timestamp).
- No single network failure will cause any service interruption
- Same bandwidth allocation needed as in traditional SONET rings, but solution even better: 0 loss instead of 50 msec.
Loss Concealment

- If a single 8X8 block of pixels is lost, the codec can use spatial and temporal averaging of adjacent 8X8 blocks.
- MPEG4 Advanced Video Coding can send out two or more streams – base stream plus streams containing details for refinement. If any one stream is available to render a 8X8 block of pixels, something can be shown.
- If all else fails, repeat the last known good frame but this is visible (frame freeze)