Architecture for IPTv Distribution: Cooperative P2P and Multicast

Vijay Gopalakrishnan, TaeWon Cho, Rittwik Jana, Samrat Bhattacharjee, Divesh Srivastava, Yin Zhang* and K. K. Ramakrishnan

AT&T Labs Research, NJ

*University of Texas at Austin

May 2007
Video Distribution

• Video viewing is likely to be increasingly on-demand
 – Only news and sports events are likely to be delivered in real-time as “linear TV” over the long-term

• Video on-demand system in the service provider context currently organized as:
 – Set of media distribution servers in metropolitan cities that retain copies of on-demand content
 – User requests served on a unicast basis
 • Desirable characteristic: Provider can control perceived quality
 • But approach does not scale

• Multicast based approach for serving on-demand content highly desirable
 – But opportunity to exploit it while meeting user’s requirements for small start-up delay limited
Alternate Technologies on the Internet

• On-demand content is increasingly provided by mainstream content providers
 – ABC, NBC and other “mainstream” providers.
 – Depend on caching to overcome scaling problems while serving requests on a unicast basis

• Peer-to-peer technologies were being used by “hobbyists” until recently
 – Based on end-systems and Internet connectivity
 – Becoming more “mainstream” (e.g., BBC)
 – Likely to be increasingly used (e.g., ’08 Olympics)

• Peer-to-peer technologies have been predominantly download-and-play
 – BUT: increasingly being refined to provide streaming capability
 – But mechanisms do not exploit or need knowledge or control of network infrastructure
 • No SLAs can be made. Use end-system intelligence and buffering.
 • Start-up latency may still not be satisfactory for a “paying customer”
Serving the needs of “Entertainment”

- “Entertainment” content (Video and Audio): large amount of data, with real-time constraints
 - Place stringent demands on the network – capacity and latency – tight performance requirements in general.
- Peer-to-Peer technologies are attempting to serve this need across the entire spectrum – including “streaming” content to the user
 - But not tied to the infrastructure: can be quite inefficient in how they use the network.
- Users will migrate to “The single converged Network” when it can meet their needs
 - one which provides a satisfying experience.
- Entertainment is all about satisfying the viewer in such a way that they are absorbed in the story being told – not how it is delivered.
 - No significant Latency, Loss, Artifacts; Good sound, without clipping or interference.
Streaming with Peer-to-Peer Technologies

• “Traditional” P2P focused on “finding” the content and caching the content at peer end-points
 – Distribution of content across points in the network help to serve the needs of a distributed population
 • Driven by nodes that have indicated an interest in that piece of content
• Streaming content with P2P: solutions beginning to grapple with the traditional issues
 – Scheduling: which request to serve; when to make a request; prioritizing requests
 – Resource management: overcome limitations in bandwidth by having multiple peers serve “chunks” of content - stripe from peers
• Content Providers complement P2P technologies
 – Servers to complement peers serving up content to overcome capacity limitations
 • Unicast; multicast (different forms: cyclic; skyscraper etc.)
Our Approach for Video-on-Demand

• Unified approach to provide efficient support for VoD in a service provider environment using
 – Multicast
 – Caching
 – Peer-to-peer that is topology aware

• Good user experience
 – Fast start: Decouple user-perceived performance from popularity
 – Maintain quality – minimum (→ zero) user perceived interruptions while watching arbitrary length content
 – User experience should be limited only because of user client capability/storage
 – Make it easy for users to find the content of interest

• Service provider friendly
 – Scalable: Decouple performance from population of users
 – Efficient use of resources
Video Distribution: Environment

- With traditional P2P or unicast, traffic traverses significant portion of backbone
 - Network optimized solutions are desirable
 - Multicast for live content is very desirable
 - CDN caches for popular non-live content
 - We are investigating peer-assisted near-VoD that uses multicast and caches that understand and exploit the topology
Goals of our Architecture

• **Use Network Resources Efficiently**
 – Use multicast wherever possible
 – Reduce server load
 – Use peer capability to store and serve popular content whenever possible
 – Leverage storage and intelligence in the clients when possible; server and network wherever necessary; caching
 – Exploit popularity of content to achieve efficiency and optimize user experience

• **User experience should be limited only because of user client capability/storage**
 – Isolate bandwidth and server capacity limitations from the clients as much as possible

• **Early stages of design and implementation of a prototype to help us understand the issues**
Long-term: Need to Handle Meta-Data

• IP as the medium for Video Distribution gives us the opportunity to enrich the viewing experience for the consumer

• Thousands of content providers for video and multimedia streams worldwide
 – Topics may be of local, regional, national and international interest

• Desire: serve diverse needs of communities
 – Distribute programming of interest to different ethnic groups; programming that may be generated worldwide

• Enable integration of video with other media
 – E.g., integrate a browser to provide related information for a viewer of a current program
 – Enable launching of video related to text consumer is reading on browser
Searching for Programming

• **Search for linear TV by**
 – Interactive channel guide that we typically see with video distributed on other media
 – Name of a TV show
 – Name of a person involved in the TV show

• **Search for a video-on-demand**
 – Name of a movie
 – Name of a person (director; actor)

• **Desire:**
 – Ability to search in flexible ways, using fine-grained specification of interest
 – Ability to subscribe to programming of interest, especially as more and more content moves to being on-demand
Scaling Issues with Large Numbers of Content Providers offering content

- **Information Scale: Producers and Consumers face challenges**
 - Large number of producers (publishers; data sources)
 - Even larger number of consumers (subscribers, users querying/looking for content)
 - Large number of information producers makes it difficult for a consumer to know where to find relevant information
 - Significant challenge: “whom to ask” and “whom to tell”

- **XML becoming ubiquitous format for information exchange**
 - With XML: easier to find information of interest and extract data
 - Keyword queries; Structured queries

- **Annotating videos: e.g., with XML tags (MPEG)**
 - Enable more elaborate searches
 - Fine grained specification of desired content
 - Enable combinations of “publish-subscribe” and “search-view” of content
XTreeNet: Meta-data and media-data

- **Meta-data describes the media-file**
 - Generated from closed caption, speech recognition, DVD subtitles
 - Publisher can be a media source (NBC) or second-hand producer (Miracle)

- **Network connects clients to publishers using CD**
 - Content Descriptors (CDs) act like “indexes” in a distributed data base environment
 - CDs decouple producers from the consumers
 - CD can be keyword (“Britney Spears”) or XML schema path (“/title/nightly news”)
 - Multicast meta-data over multiple core based trees
 - Different cores for different CDs – to reduce traffic concentration

1) Search keyword
2) Subscribe to Content Descriptor Of keyword “news”
3) Get meta-data of Published document With keyword “news”
4) Locate media file Using meta-data