IPTV Bandwidth Demands in Metropolitan Area Networks

LANMAN 2007

Jesse Simsarian and Marcus Duelk
Bell Laboratories, Alcatel-Lucent, Holmdel, NJ 07733,
email: jesses@alcatel-lucent.com
June 11, 2007
Introduction

- **Shift towards IPTV**
 - Converged voice, video, data networks
 - Unified management: OPEX savings
 - Emerging services: VoD (20% of users that have access to VoD use it daily), Gaming, Interactivity?
- **VoD is a bandwidth driver in MAN: Ability to generate multiple 100 Gb/s**
 - Amount of generated bandwidth depends on where VoD servers are located and caching of content
- **Large fraction of future traffic VoD: up to 90%**
 - Implications for network: QoS, unidirectional traffic patterns, large packets
- **This work:**
 - IPTV/VoD delivery in service provider network
 - Not Internet content delivery (YouTube, MovieLink, etc..)
 - Service provider determines caching locations
 - Centralized architecture (not peer-to-peer (P2P))
 - How much traffic on MAN network?
 - What is effect of caching content and delivering from an aggregation node?
 - What fraction of future traffic will be VoD?
Traffic Breakdown: Voice, Data, Video

- **Voice**
 - Traffic bandwidth usage predicted to remain nearly flat over the next 5 years:
 - \(~30 \text{ Gb/s} in 2005-2010\) for MAN with 1M households

- **Data (including P2P)**
 - Average sustained download rate of 41 kb/s (over 24 h per broadband user, 2005)
 - From peak-to-average bandwidth ratio of 1.44, obtain 60 kb/s per user in evening hours
 - Market study forecast of 55% growth/year → 340 Gb/s in 2010
 - Lower bound: 45% growth/year gives 160 Gb/s
 - Upper bound: 65% growth/year gives 620 Gb/s

- **Video**
 - Broadcast: 50 HD channels (8 Mb/s for HD) and 200 SD channels (2.3 Mb/s for SD) use only 0.9 Gb/s of BW in MAN
 - VoD: Potential for large amounts of bandwidth usage
VoD Network Architecture

- Based on service provider network architectures:
 - Layer of aggregation, optical MAN core w/ TDM and WDM
- VHO contain VoD servers that contain 100% of video content
- VSOs contain VoD servers with more popular content closer to users
- Unique HD stream sent to each user from VHO and VSO offices (assume HD, 8 Mb/s per stream)
Content Popularity

- 60,000 films - More than today’s VoD offerings, similar to Netflix
- Cache the more popular content at the VSO (closer to the end user)
- Zipf distribution: \(P = \frac{M}{k^a} \), \(k \) is popularity rank, \(a = 0.7 \) for VoD content
- Integrated Zipf distribution shows fraction of streams from VSO and VHO as function of \(R \)
Cost for Switching, Routing, and Transport

- **Routing & Switching**
 - Cost for the router cards with Ethernet interfaces and the number of routing hops traversed
 - Some streams served from VSO, some from VHO (cost never goes to zero)

- **TDM and WDM Transport & Switching**
 - Assume MAN core is TDM circuits connected with WDM transport system with optical bypass
 - Only the traffic served from VHO incurs TDM and WDM cost

- **VoD server cost**
 - Include film storage cost and cost per VoD stream
 - Film storage cost increases with more content cached at VSOs
Optimum Amount of Caching

- Optimum amount of caching \((R_0) \) found at minimum total network cost
- \(R_0 \) becomes higher as the concurrency increases
 - At high VoD usage, more content should be delivered close to the end user
Optimum Caching Level

- At high VoD usage, more content should be delivered close to the end user
- When is all content delivered from VSO?
 - $25/film: R_0$ reaches 100% at low concurrency, 24%
 - $50/film: R_0$ reaches 100% at higher concurrency, 48%
 - $150/film$: some content always delivered from VHO
- Include OPEX overhead in cost
VoD Traffic in the MAN

- **Multiple 100 Gb/s generated in MAN**
 - MAN traffic peaks for low film caching cost as more content delivered from VSO
 - Argument for 100 GbE in the MAN network
- **VoD portion of MAN traffic can range up to 90% for no caching, and up to 40% for low storage cost**
 - VoD portion of MAN traffic given as fraction of total (voice + data + video)
 - Voice and data are projections for 2010 (30 Gb/s voice and 340 Gb/s data)
Conclusions

- VoD delivery has the capability to generate multiple 100 Gb/s of traffic in MAN
 - Driver for 100 GbE
- Large percentage of MAN traffic may be VoD traffic - up to 90%
- Local caching closer to the user reduces MAN traffic
 - For a large number of titles (e.g. 60,000) fraction of VoD traffic in the MAN can still reach 40% with low caching costs
- Implications for the network
 - Video sensitivity to loss
 - Low packet burstiness for smooth streams from server
 - Many large packets
 - Unidirectional
- Network can be optimized for VoD delivery
 - Asymmetric delivery with high bandwidth density
THANK YOU
MAN Voice Traffic

- Voice traffic bandwidth usage predicted to remain nearly flat over the next 5 years: 30 Gb/s in 2005, 31 Gb/s in 2010 for MAN with 1 M households
- Surveyed: Market studies forecasting subscription rate of mobile phones, fixed land lines, and VoIP lines
- Predict decline of PSTN lines but overall increase in phone connections due to growth in mobile and VoIP
- Growth in phone connections offset by decline in bandwidth per call due to PSTN replacement with more efficient VoIP and mobile lines
MAN Data Traffic

- From 2005 Japanese broadband access study, obtain average sustained download rate of 41 kb/s over 24 h per broadband user
- From peak-to-average bandwidth ratio of 1.44, obtain 60 kb/s per user in evening hours
- Market study forecast of 55% growth/year results in 540 kb/s in 2010
 - Lower bound: 45% growth/year gives 260 kb/s
 - Upper bound: 65% growth/year gives 980 kb/s
- Broadband penetration: 70%, Concurrency: 90%
- Ranges: 160 Gb/s → 340 Gb/s → 620 Gb/s in 2010
VoD Traffic, No Caching Limits

- Amount of traffic delivered from a single CO, VSO, and VHO assuming all content stored and streamed from that location (assume 8 Mb/s per stream)
 - CO traffic: below 10 Gb/s
 - VSO traffic: reaches 100 Gb/s
 - VHO traffic: multiple 100 Gb/s
- How does caching at the VSO reduce the VHO traffic?
Cost for Switching, Routing, and Transport

- **Routing and Switching:** \(C_{RS} = C_{EIF} \left(B_{VHO} \times H_{VHO} + B_{total} \times H_{total} \right) \)
 - \(C_{EIF} \): Cost for Ethernet interface, \(B_{VHO} \): BW delivered from VHO, \(H_{VHO} \): Number of routing hops this traffic undergoes

- **MAN core** consists of TDM switching nodes connected with WDM transport links with optical bypass for through traffic: \(C_{TDM+WDM} = B_{VHO} \left(C_{TDM} + C_{WDM} \right) \)
 - \(C_{TDM} \): Cost for TDM interface, \(C_{WDM} \): Cost for WDM interface

- **VoD server cost:** \(C_{Server} = C_{Storage} \left(R \times N_{VSO} + F \right) + C_{stream} \times N_{Sessions} \)
 - \(C_{Storage} \): cost/film for disk storage and management, \(N_{VSO} \): Number of VSO nodes, \(F \): total number of films offered, \(C_{stream} \): cost per VoD stream, \(N_{Sessions} \): number of simultaneous VoD sessions