Balancing Loss-Tolerance between Link and Transport Layers in Multi-Hop Wireless Networks

Vijay Subramanian¹, Shiv Kalyanaraman¹ and K. K. Ramakrishnan² 1-(Rensselaer Polytechnic Institute), 2-(AT&T Labs Research)

We gratefully acknowledge support from Air Force/ESC Hanscom and MIT Lincoln Laboratory, Letter No. 14-S-06-0206

Multi-Tier NLOS MANETs & Meshes: Challenging Conditions for TCP/Link Layers

- Municipal Wireless Deployments / Community wireless networks / mesh networks will lead to poor performance caused by low SNR and high interference.
 - •Tropos, Google Wifi
 - Dense wireless deployments in urban areas/ high rises will cause disruptions/ burst errors due to interference.
 - Preliminary studies such as <u>Roofnet</u> have reported high packet losses.
 - Protocols need to be loss tolerant and provide reliability

Protocol Objectives

- Dividing the burden of reliability between link and transport layers
 - And also between proactive and reactive phases
- Good performance over multiple hops even at high loss rates.
- Delay Control
 - Link-latency should be as small as possible
- Small Residual Loss Rate
 - Transport layer should be exposed to a negligible residual loss rate
- High Link-level Goodput
 - Link-goodput determines user goodput and should be high
 - Translates to high Transport Layer Goodput

Building Blocks

• Tools Available:

- Forward Error Correction (FEC)
 - » minimize wastage
- Retransmissions (ARQ)
- Loss Estimation
 - » dynamically tune the FEC
- Adaptive Granulation
 - » How does varying the packet/fragment size at transport/ link layer help us?

What is the right mix of mechanisms to achieve loss tolerance and robustness?

LT-TCP, LL-HARQ Scheme Features

- Loss Estimation using EWMA to estimate channel loss rate.
- Data granulation and block construction
 - Block = Data + PFEC
 - RFEC stored for future use
- Initial transmission consists of <u>data +</u> <u>PFEC</u> packets.
- Feedback from the receiver indicates the number of units still needed for recovery.
- <u>**RFEC</u>** packets are sent in response to the feedback.</u>
- If <u>k out of n</u> units reach the receiver, the data packets can be recovered.
- LT-TCP at the transport layer and LL-HARQ at the link layer.
- LL-HARQ operates with <u>a strict limit of</u> <u>1 ARQ</u> attempt to bound latency.

Protocol Framework

Feedback has loss estimate and number of required fragments

Achieving Balance Between Transport and Link Layers

- We seek to achieve a division of labor between the transport and link layers.
- We want the link layer to do as much as possible.
 - But current link approaches work too hard trading off
 - » Latency, due to high ARQ
 - » Goodput, with non-adaptive and *ad hoc* FEC.

• With LT-TCP + LL-HARQ

- LL-HARQ works to minimize link residual loss rate but does not provide zero loss rate to TCP.
- Over a single hop, residual loss rate is low enough for TCP-SACK to handle.
- Over multiple hops, residual loss rate is too large for TCP-SACK.
- LT-TCP, designed to be robust to loss can handle such scenarios.
- LT-TCP + LL-HARQ give good performance even under worst case conditions.

Simulation Setup: 1-hop and 4 hops

Test Configurations: 1-Lossy Link Case and Multi-Hop Path Case. Each link is affected by the disruption error process as described.

Simulation Parameters

- LL-ARQ is the baseline protocol and it differs from LL-HARQ in the following:
 - Number of ARQ attempts
 - FEC protection
- Bursty Error Process:
 - ON-OFF loss model
 - Error Rate in ON state = 1.5 times error rate in OFF state
 - Example: 50% PER = 25% PER in OFF and 75% PER in ON states.

Link Level Goodput

Link-level goodput for the single hop topology.

 Compare the performance at the link layer for the baseline transport protocol (TCP-SACK)

 We see that LL-HARQ is able to significantly outperform LL-ARQ

• Per hop link latency is much better with LL-HARQ than with LL-ARQ.

10 Flows, 4 hops	AVERAGE PACKET ERROR RATE							
Average Link Latency (ms)	0 %	10 %	20 %	30 %	40 %	,50 %		
LL-ARQ	10.83	32.18	45.63	59.64	80.19	98.80		
LL-HARQ	10.83	14.21	15.15	17.04	18.47	19.01		

End-End Delay

- We study the effect on the link protocol on the end-end RTT.
- As seen, with LL-ARQ, per hop latency is high.
- Over multiple hops, this translates to unacceptably high end-end delay.
- The high service time of LL-ARQ translates to low transport goodput.

Transport Layer Goodput

10 Flows, 4 hops	AVERAGE PACKET ERROR RATE								
PARAMETER	0 %	10 %	20 %	30 %	40 %	50 %			
Receiver Goodput(Mb/s)	9.63	7.58	6.16	4.81	3.38	1.68			
CI Bounds (Goodput)	[9.62,9.64]	[7.56,7.61]	[6.12,6.19]	[4.78,4.85]	[3.38,3.38]	[1.62,1.74]			
Link level Residual Loss Rate	0.00	0.00	0.01	0.08	0.61	3.99			
Link level Goodput	9.93	7.81	6.35	5.02	3.77	2.41			
Average Link Latency (ms)	11.08	14.69	15.65	17.73	19.36	20.08			

TABLE I

10 FLOWS, 4 HOP TOPOLOGY, ON-OFF ERROR MODEL: LT-TCP+LL-HARQ PERFORMANCE FOR DIFFERENT LOSS RATES. THE COMBINATION IMPROVES RECEIVER GOODPUT SIGNIFICANTLY WITH TIGHT CONTROL ON LATENCY. LT-TCP OVERCOMES THE 4% RESIDUAL LINK ERROR RATE.

Summary

- Higher data rates/ smaller cells / dense deployments will lead to high packet loss rates on wireless networks.
- We look at independent yet similarly designed protocols at the transport and link layers.
- Key Goals:
 - High Link goodput \rightarrow high transport performance
 - Low latency on link layer to keep end-end delay low on multihop paths.
 - Low residual loss rate desired

• Key building blocks are

- Loss Estimation
- Data Granulation into Blocks
- Adaptive FEC (provisioned as proactive and reactive)
 - » No FEC provisioned if there is no loss
- Tight Delay control at the link layer

• Results show that LT-TCP and LL-HARQ complement each other to yield synergistic benefits.

- Performance is better compared to TCP-SACK / LL-ARQ combinations.

