Address and traffic dynamics in a large enterprise network

Thomas Karagiannis, Richard Mortier Microsoft Research, Cambridge

Enterprise networks

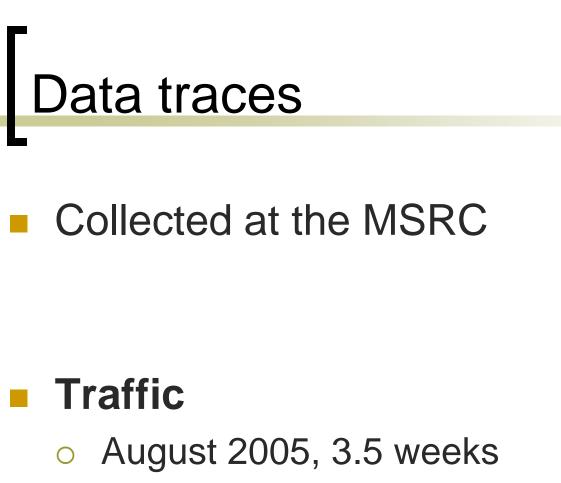
- Followed the Internet's design principles
 - Radically different requirements/features
- Characteristics
 - Hundreds to several thousands of hosts
 - Single co-operative administrative domain
 - Hosts are partially trusted to share network information
 - Significant management and bandwidth costs
 - E.g., WAN optimizers
 - Do not want net-neutrality!
 - Can estimate the value of each application's traffic

Network Management today...

- Enterprise networks
 - High complexity, costly, error-prone
 - 80% of IT budgets just for maintenance

Challenges:

- Application complexity constantly grows
- Limited analysis of network characteristics
 - E.g., traffic dynamics
 - Access restrictions and data sensitivity


Profiling enterprise networks

Traffic dynamics

- Can we profile enterprise traffic by sampling (a few) hosts?
 - Functional role (e.g., client vs. server)
 - "Heavy" hitters

Address dynamics

- What are the mobility characteristics of hosts?
 - Stability of Address-Name-Subnet mappings
 - Host mobility within the enterprise

o 34K IPs (591 local), 13B packets, 12.5TB

Topology

OSPF, 3 years, stub and backbone

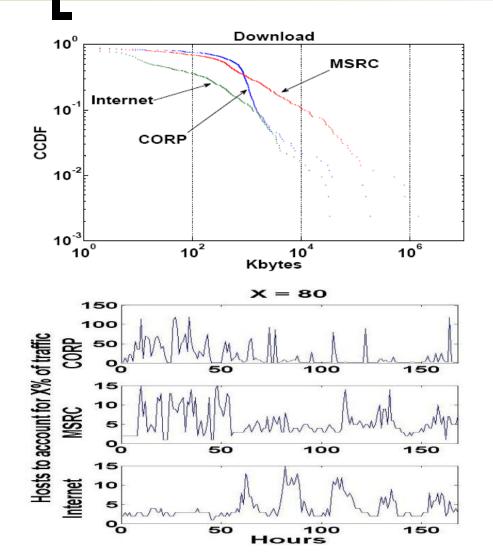
CORPNET

DC

Proxy

Internet

MSRC


Subnet

Profiling traffic dynamics

Expected to find:

- Functional role of hosts should be easy to detect from traffic contributions
 - Mostly client-server applications
- "Heavy" hosts should be stable over time
 - A small set of servers (mostly in DC)

Profiling traffic dynamics

- CCDFs of hourly averages
- Heavy-tailed distributions
 - Small-set of hosts dominates traffic

- Temporal & spatial variability
 - Heavy set varies over time
 - Unable to determine host functional role

Profiling traffic dynamics

Expected to find:

- Functional role of hosts should be easy to detect from traffic contributions
 - Mostly client-server applications
- "Heavy" hosts should be stable over time
 A small set of servers (mostly in DC)

Data analysis:

- Traffic contributions cannot distinguish client vs. server hosts
- Significant variability!

Implication:

- Sampling hosts does not help!
- Connectivity appears to be a better metric (details in the paper & tech report)

Profiling address dynamics

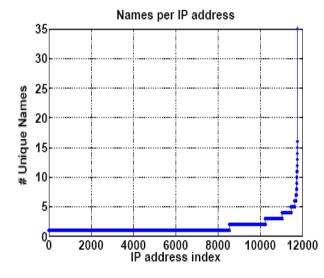
How often should IPs be considered as unique identifiers?

- IP addresses map to several hosts and vice versa
 - E.g., DHCP, multi-homing, multi-machine services
- Examine the stability of address mappings
 - DNS packets & router configuration files
- Three types of mappings:
 - Name-address : Unique names per IP
 - Address-name : Unique IPs per name
 - Subnet-name : Unique subnets per name

Profiling address dynamics

Findings:

Name-address:


- 73% of addresses map to a unique name
- Addresses can map to 10s of names

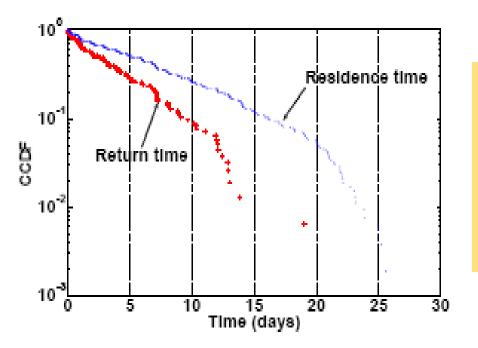
Address-name:

- 63% of the names map to a single address
- Multi-homing and clusters the main factor for multiple IPs per name

Subnet-name:

- 63% of the names map to a single subnet
- 30% of the names map to two subnets
- 4% due to travelling!

Host mobility


Of general interest

- O DTN settings (e.g., Infocom 2006, Mobicom 2007, Infocom 2008)
- Understanding human mobility (e.g., Barabasi-Nature Jun08)

Examine "host" trips within the enterprise

- Extract subnet-name mappings
- 9,269 names in 110 cities across 63 countries
- Analyze location changes (trips) across enterprise sites
 - Residence time, return time

Host mobility

- Exponential distributions
- 38% of residence time is < 3 days
- Means
 - Residence time : 5.5 days
 - Return time : 3.8 days

Concluding remarks

Two perspectives of enterprise network dynamics

Traffic

- Sampling a few hosts is not straightforward
- Engage hosts in network management (SIGCOMM 08)

Address

- Analyzing traces requires more than just packets
 - Only 2/3 of mappings are unique

