
Exploiting Causality and
Communication Patterns in Network

Data Analysis

Oulu University
Secure Programming
Group

Pekka Pietikäinen (pp@ee.oulu.fi)

Network analysis is fun...

Let's add some complexity.

... and related protocols

End result

In other words

• Analyzer shows what it can decipher
from the data

• Filters are simple, efficient rules that
reduce the amount of data that is
shown
• BPF etc.

• You have to know what you're looking
for
• Sometimes it's data that's MISSING

• Firewall blocking packets, MTU issues etc.

• Multiple networks, multiple addresses
for different components

Causality in network traffic

• Treat network traffic as flows
consisting of packets

• When a new flow is discovered on the
network, find candidates that are
potentially related

• Candidates are chronologically
preceding flows, for which one of the
endpoints of the new flow is involved.

• Have to have understanding on what
addresses different components have

Drawbacks and lessons learned

• In first iteration all packets were
transmitted to central location for
analysis

• Maintaining a graph for all traffic is
resource intensive.

• Usually you can work on the flow
level, sometimes you need the
packets.
• Architecture should allow quick retrieval

of flows and corresponding packets

• Causality is an useful abstraction

Architecture of probe

Communication patterns

• “Regular expressions” for network
traffic

• Simple Python library for fetching
flows/packets and matching
attributes.

• Packets are fetched only if necessary

Example #1

@matcher
def matchexample((flow, packet)):
 def flowMatcher():
 return flow.src=='10.0.0.1' and
 flow.probe=='probe-eth2'
 def packetMatcher():
 # Accept any packet belonging to
 # a matching flow
 return True
 return flowMatcher, packetMatcher

Chained matchers

@matcher
def icmpMatcher(flow, prev):
 def flowMatcher():
 return flow.dst == prev.src and
 flow.proto == 'ICMP'

matcher2 = sequence(matchexample,
 icmpMatcher)

More possibilities

• NoPair
• Triggers when a given sequence does not

occur within a given time window
• eg. NoPair(matchexample,

icmpResponse)

gi = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE)
def foreignDstMatcher(flow):
 def flowMatcher():
 return gi.country_code_by_addr \
 (flow.dst) != 'US'

Simple example

Pieces needed

• Isolating traffic that involves a call
between phone1 and phone2
• Addresses are dynamically assigned

• SIP
• matches TCP port 5060 traffic on the

firewall, parses session setup with a simple
string regexp to find identities of phones

• UDPProxy
• Sequence matcher that matches flow pairs

that are both UDP, have the firewall as an
intermediary AND matches phones

• Causal

Result

Performance etc.

• Capture: speed of disk (Multiple GigE)
• Indexing: 40kpps
• Fetching flows: 2500 flows/s
• Simple matches: ~= same
• Sequence matches: ~= 60s to process

10s of traffic at 250Mbps

Conclusions and current/future work

• Add more understanding of network
topology to analysis

• Optimize
• Move more processing to edges

• Do packet level matching there?

• Don't limit to just network traffic,
there are other sources that provide
useful information (e.g. WLAN
association logs can be used to
pinpoint IP/MAC address)

	Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

