

Deployment Guidelines for Highly Congested IEEE 802.11b/g Networks

Andrea G. Forte and Henning Schulzrinne Columbia University

- IEEE 802.11b/g networks ubiquitously deployed
- Mostly uncoordinated deployments
- Channel assignment not trivial
 - conventional wisdom: assign only channels 1, 6, 11
- Our approach
 - test in the field and in testbed
 - practical guidelines for network administrators

- IEEE 802.11a
 - 5 GHz band
 - 12 non-overlapping channels
 - Rarely used for home networks, never for public access networks
- IEEE 802.11n
 - emerging likely to be common for residential
- IEEE 802.11b/g
 - 2.4 GHz band
 - 3 non-overlapping channels
 - Dominates residential and public networks
 - \rightarrow We focus on IEEE 802.11b/g

- Experiment 1
 - Testing different channel configurations in existing networks
 - Columbia University campus (site survey)
- Experiment 2
 - Studying co-channel interference in highly congested scenarios (large number of users)
 - ORBIT wireless test-bed

- Found a total of 668 APs
 - 338 open APs: 49%
 - 350 secure APs: 51%
 - Best signal: -54 dBm
 - Worst signal: -98 dBm
- Sometimes could see >100 APs at once
- Found 365 unique wireless networks
 - "private" wireless networks (single AP): 340
 - "public" networks (not necessarily open): 25
 - Columbia University: 143 APs
 - PubWiFi (Teachers College): 33 APs
 - COWSECURE: 12 APs
 - Columbia University Law: 11 APs
 - Barnard College: 10 APs

Surrounding APs

Surrounding APs

. 0

10

9

Throughput and retry rate with interference on channel 4

 \rightarrow Better than channel 6

- Throughput and retry rate with interference on channel 8
- \rightarrow Better than channel 6

0

1

2

3

4

5

6 Experiment 7

8

- Using overlapping channels does not affect performance negatively
 - In the experiments channel 4 and channel 8 are a much better choice than channel 6
- Use at least channels 1, 4, 8 and 11 (minimum overlapping in band)
 - better spatial re-use
 - no significant decrease in performance

- ORBIT wireless test-bed
 - Grid of 20x20 wireless nodes
 - Used only maximum bit-rate of 11 Mb/s (no ARF)
 - G.711 CBR VoIP calls
 - Number of clients always exceeding the network capacity (CBR @ 11Mb/s → 10 concurrent calls)

- AP1 using Ch. 1
- AP2 using Ch.6
- Num. of clients: 43

- AP1 and AP2 using Ch. 1
- Num. of clients: 43

- AP1 using Ch. 1
- AP2 using Ch. 4
- Num. of clients: 67

- AP1 and AP2 using Ch. 4
- Num. of clients: 67

- When using two APs on the same channel
 - Throughput decreases drastically
 - Physical-error rate and retry rate increase
- Using two APs on two overlapping channels performs much better than using the same non-overlapping channel

→Do not deploy multiple APs on the same nonoverlapping channels

 \rightarrow Use overlapping channels!

•Network performance with single AP in highly congested scenarios

•Network performance with two APs on the same channel in highly congested scenario

→Using two APs on the same channel performs worse than using a single AP!

Conclusions & recommendations

- Using overlapping channels does not affect performance negatively
 - Use at least channels 1, 4, 8 and 11
- Do not deploy multiple APs on the same nonoverlapping channels
- Using two APs on the same channel performs worse than using a single AP!
 - Just increasing the number of APs does not help
 - → Use overlapping channels!

