SYLLABUS

Discipline name	Mathematical Analysis				
Profile	Electronics and Telecommunications Engineering				
Specialization	Telecommunications Technologies and Systems				
Code	51320109				
Course leader	Prof. Dorian Popa, Ph.D., dorian.popa@math.utcluj.ro				
Collaborators	Lecturer Adela Chis, Ph.D., adela.chis@math.utcluj.ro				
Department	Mathematics				
Faculty	Automation and Computer Science				

Sem.	Type of discipline	Course	Course Applications Course Applications		Ind. study	[AL dits		Form of assessment					
		[hours/week]			[hours/sem.]					LO	Cre		
			S	L	Р		S	L	Р		Г	Ŭ	
1	Fundamental	2	2		I	28	-	28	-	94	150	5	Exam

Acquired competences :

Acquired skills (what the student is able to do):

Motions and concepts concerning sequences, series, power series, complex functions, trigonometric and Fourier series, metric spaces, partial derivatives, local extremum, conditional extremum, implicit functions.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

- To operate with numerical and functions series.
- To operate with the concepts of metric spaces.
- To operate with partial derivatives and the differential of a functions.
- To determine the local extremum and the conditional extremum of functions.
- To operate with implicit functions.
- To operate with improper integrals

Prerequisites (if necessary)

Notions on mathematical analysis, algebra and trigonometry from high school

A. Course/Lecture (course/lecture titles)

- Course 1 The sets R and C. Sequences.
 - Course 2 –Series of real and complex numbers.
 - Course 3 Series with positive terms.
 - Course 4 Sequences and series of functions. Power series.
 - Course 5 Taylor formula. Taylor series.Complex elementary functions.
 - Course 6– Trigonometric series. Fourier series.
 - Course 7 Metric spaces. Topology of a metric space.
 - Course 8 Partial derivatives. The directional derivative.
 - Course 9 The differential of a function.
 - Course 10 Local extremum of a function.
 - Course 11 Implicit functions.
 - Course 12- Conditional extremum.
 - Course 13 Improper integrals.
 - Course 14 Integrals delpendent on parameters.

B1. Applications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)

- 1 Seminar 1 Sequences of real sequences of complex numbers
 - Seminar 2 Series of real numbers
 - Seminar 3 Series of complex numbers
 - Seminar 4 Series functions. Uniform convergence
 - Seminar 5 Power series. Applications
 - Seminar 6 Complex functions. Applications
 - Seminar 7 Trigonometric series. Fourier Series.
 - Seminar 8 Metric spaces. Applications
 - Seminar 9 Partial derivatives
 - Seminar 10 Problem with partial derivatives
 - Seminar 11 Local extremum
 - Seminar 12 Implicit functions
 - Seminar 13 Conditional extremum
 - Seminar 14 Generalized integrals.

SYLLABUS

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

2 synthesis reports							
12 sets of problems (the preparation part in every laboratory)							
3 sets of problems (course homework)							
Individual	Course	Problem	Applications	Examination	Additional	Total no. of individual study	
study	study	solving,	preparation	time	reference	hours	
structure		laboratory,			study		
		project					
Hours	28	6	18	3	9	64	

References (Textbooks, courses, laboratory manual, exercise book)

- 1. Dorian Popa, Calculus Mediamira Cluj-Napoca, 2006..
- 2. O. Stănășilă, Analiză matematică, EDP București, 1981.
- 3. N. Vornicescu, D.M.Ivan, D. Popa, Calcul diferențial, Editura Mediamira, 2004.
- 4. M. Ivan, Calculus, Mediamira Cluj-Napoca, 2004.
- 5. G.N.Berman, A problem book in Mathematical Analysis, Mir Publisher, Moscow, 1977.

Final evaluation	
Evaluation method	Writen paper – 3 hours containing theory and problems. After 7 courses partial
Evaluation method	evaluation (3 hours)
	Seminar S
Mark components	Theory T
	Problems P
Mark computation	N=0.2S+0.2T+0.6P

Course leader,

Prof. Dorian POPA, Ph.D.