SYLLABUS

Discipline name	Linear Algebra			
Profile	Electronics and Telecommunications Engineering			
Specialization	Telecommunications Technologies and Systems			
Code	51320209			
Course leader Associate Professor Ioan Radu Peter, Ph.D,				
	Ioan.Radu.Peter@math.utcluj.ro			
Collaborators				
Department	Mathematics			
Faculty	Automation and Computer Science			

Sem.	Type of discipline	Course	App	licati	ons	Course Applications Ind. study		Ind. study	AL dits		Form of assessment		
		[hou	[hours/week] [hours/sem.]		LO	Cre							
			S	L	Р		S	L	Р		L	0	
1	Fundamental	2	2	-	•	28	28	-	-	94	150	5	Exam

Acquired competences :

Acquired skills (what the student is able to do):

Knowledge of algebra, geometry and their applications. Identifying complex problems and reviewing related information to develop and evaluate options and implement solutions

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

The ability to apply general rules to specific problems to produce answers that make sense.

Prerequisites (if necessary)

Linear Algebra and Analytic Geometry - elementary knowledge (high school level)

A. (Course/Lecture (course/lecture titles)
1	Linear spaces. Definition. Linear subspaces. Examples.
2	Linear independence. Basis. Dimension. Change of basis.
3	Inner - product spaces. Definition, properties, Schwarz' inequality. Examples
4	Linear transformations. Definition, elementary properties, Kernel and Image.
5	The matrix associated to a linear transformation. The standard construction. Expressions in terms of
	coordinates.
6	Eigenvalues and eigenvectors. Definitions, invariant subspaces, characteristic polynomials.
7	The diagonal form. Canonical forms, diagonalizability.
8	The Jordan canonical form. Construction of a Jordan basis and a Jordan matrix.
9	Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix.
10	The adjoint operator. Definition, properties, examples.
11	Self-adjoint operators, unitary operators, properties of the eigenvalues and eigenvectors.
12	Bilinear forms, quadratic forms. The associated matrix.
13	The canonical form. Reduction to a canonical form. The method of eigenvalues and Jacobi's method.
14	Conics and quadrics. Reduction to a canonical form. Geometric properties.

B1.	Applications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)
1	Determinants, matrices, geometric vectors
2	Linear spaces, bases, dimension
3	Inner-product spaces
4	Linear transformations. Examples
5	Linear transformations characterized in terms of matrices
6	Invariant subspaces, eigenvalues, eigenvectors
7	Diagonalizable linear transformations
8	Jordan bases, Jordan canonical forms
9	Elementary functions of a matrix, examples
10	The adjoint operator
11	Special classes of operators
12	Bilinear forms, quadratic forms
13	Reduction to a canonical form
14	Conics and quadrics, reduction to a canonical form

SYLLABUS

C. Individual study	(reference study	contents.	synthesis	materials.	projects.	applications etc.)
or man rated or any	(101010100 00000)				projecto,	apprivations eve.	

14 sets of problems (the preparation part in seminar)

Individual	Course	Problem	Applications	Examination	Additional	Total no. of individual
study	study	solving,	preparation	time	reference	study hours
structure	2	laboratory,	1 1		study	5
		project			-	
Hours	28	14	45	3	4	94

References (Textbooks, courses, laboratory manual, exercise book)

- 1. S. Axler, Linear algebra done right, second edition, Springer, 1997
- 2. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005
- 3. Gh. Sabac, Matematici speciale, E.D.P., Bucuresti, 1981
- On line references

http://users.utcluj.ro/~p.radu/Linkuri/semI_2008.html

Final evaluation	
Evaluation method	Oral exam (E): problem solving (70%) and theoretical subjects (30%).
Mark components	Exam (E: 010 points); Seminar (L: 010 points); Homework (H: 010 points);
Mark computation	$M = 0.6E + 0.2L + 0.2H$. Pass if: E \geq 4 and L \geq 4 and M \geq 4.5

Course leader,

Associate Professor Ioan Radu PETER, Ph.D.