SYLLABUS

Discipline name	Special Mathematics
Profile	Electronics and Telecommunications Engineering
Specialization	Telecommunications Technologies and Systems
Code	51320909
Course leader	Prof. Dorian Popa, Ph.D., dorian.popa@math.utcluj.ro
Collaborators	Lecturer Adela Novac, Ph.D., adela.novac@math.utcluj.ro
Department	Mathematics
Faculty	Automation and Computer Science

Sem.	Type of discipline	Course	App	licati	ons	Course	e Applications s		Ind. study	TOT Cr	Form of assessment		
		[hou	[hours/week]		[hours/sem.]					AL i	ed its		
			S	L	Р		S	L	Р			115	
2	Fundamental	2	2		-	28		28	•	94	150	5	Exam

Acquired competences :

Acquired skills (what the student is able to do):

Motions and concepts concerning, line integrals, multiple integrals, surface integrals and relations between them, complex functions – differentiation and integration.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

- To operate with line integrals
- To operate with multiple integrals
- To operate with surface integrals
- To operate with complex functions

Prerequisites (if necessary)

Notions on mathematical analysis, algebra and trigonometry from high school

A. Course/Lecture (course/lecture titles)

- Course 1 Line integrals of the first kind
- Course 2 Line integrals of the second kind
- Course 3 Differential forms
- Course 4 Measurable sets in Rⁿ
- Course 5 The Riemann integral in Rⁿ
- Course 6 Evaluation of multiple integral by iteration
- Course 7 Change of variables in multiple integrals
- Course 8 Surface integrals of the first kind.
- Course 9 Surface integrals of the second kind.
- Course 10 Integral formulas: Green, Stokes, Gauss-Ostrogradski
- Course 11 -Holomorphic functions. Cauchy-Riemann equations
- Course 12 Complex integral
- Course 13 Taylor series. Laurent series
- Course 14- Residues theorem

B1.	B1. Applications - Laboratory (list of laboratories), Seminar (contents), Project (project contents)					
1	Seminar 1 – Line integrals of the first kind					
	Seminar 2 – Line integrals of the second kind					
	Seminar 3 – Differential forms					
	Seminar 4 – Measurable sets in R ⁿ					
	Seminar 5 - The Riemann integral in R ⁿ					
	Seminar 6 – Evaluation of multiple integral by iteration					
	Seminar 7 – Change of variables in multiple integrals					
	Seminar 8 – Surface integrals of the first kind.					
	Seminar 9 – Surface integrals of the second kind.					
	Seminar 10 - Integral formulas: Green, Stokes, Gauss-Ostrogradski					
	Seminar 11 – Holomorphic functions. Cauchy-Riemann equations					
	Seminar 12 – Complex integral					
	Seminar 13 – Taylor series. Laurent series					
	Seminar 14- Residues theorem					

SYLLABUS

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)							
2 synthesis reports							
12 sets of problems (the preparation part in every laboratory)							
3 sets of problems (course homework)							
Individual	Course	Problem	Applicatio	Examinati	Additional	Total no. of individual study	
study	study	solving,	ns	on time	reference	hours	
structure		laboratory,	preparatio		study		
		project	n				
Hours	28	36	18	3	9	94	

References (Textbooks, courses, laboratory manual, exercise book)

T.Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, 1981.

S.Lang, Undegraduate Analysis, Springer, 1997.

D. Popa, Calcul integral, Editura Mediamira, 2005.

Final evaluation	
Evaluation method	Writen paper – 3 hours containing theory and problems. After 7 courses partial
	evaluation (3 hours)
	Seminar S
Mark components	Theory T
	Problems P
Mark computation	N=0,2S+0,2T+0,6P

Course leader, Prof.dr.Dorian Popa