SYLLABUS

Discipline name	Signals Theory				
Profile	Electronics and Telecommunications Engineering				
Specialization	Telecommunications Technologies and Systems				
Code	51321909				
Course leader	Prof. Marina Ţopa, Ph.D – <u>Marina. Topa@bel.utcluj.ro</u> ,				
	Assoc. Prof. Victor Popescu – <u>Victor.Popescu@bel.utcluj.ro</u>				
Collaborators	Assistant Ioana Popescu – Ioana.Popescu@bel.utcluj.ro				
	Assistant Erwin Szopos – <u>Erwin.Szopos@bel.utcluj.ro</u>				
	Assistant Botond Sandor Kirei – <u>Botond Kirei@bel.utcluj.ro</u>				
Department	Basis of Electronics				
Faculty	Electronics, Telecommunications and Information Technology				

Sem.	Type of discipline	Course	ourse Applications Course Appl		plica	tions	Ind. study	AL	lits	Form of assessment			
		[ho	[hours/week]		[hours/sem.]					LO	Cre		
			S	L	Р		S	L	Р		L	•	
3	Engineering	2	1	1	•	28	14	14	-	94	150	5	Exam

Acquired competences :

Acquired skills (what the student is able to do):

After completing the discipline, the students will be able to:

- Classify signals and systems;
- Analyze in time and frequency domains the analog periodic signals and impulses;
- Plot the spectrum of analog signals and find their frequency bands, the energy;
- Work with cross-correlation and convolution;
- Describe and analyze analog systems;
- Understand the consequences of the sampling theorem;
- Work with modulated signals with sinusoidal carrier.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

After completing the discipline, the students will be able to:

- Use the OrCAD software for signals and systems analysis;
- Use OrCAD for modeling some systems;
- Use a spectral analyzer, an oscilloscope and a signal generator for frequency analysis.

Prerequisites (if necessary)

Knowledge about complex numbers, trigonometric functions, Fourier series, Fourier and Laplace transforms, electric signals.

A. (Course/Lecture (course/lecture titles)
1	Introduction to signals theory.
2	Classification of signals.
3	Introduction to systems theory.
4	Periodic signals.
5	Impulses.
6	Applications 1 – analog signals.
7	Description of analog signals.
8	Analysis of analog signals.
9	Applications 2 – analog systems.
10	Sampled signals.
11	Amplitude modulation.
12	Special procedures of amplitude modulation.
13	Position and frequency modulation.
14	Application 3 – modulated signals.

B1.	B1. Applications – Laboratory (list of laboratories)				
1	Introduction in OrCAD.				
2	Periodic signals.				
3	Properties of Fourier harmonic series.				
4	Frequency characteristics.				

SYLLABUS

5	Sampled signals.
---	------------------

6 Amplitude modulation (AM and DSB).

7 Review.

B2.	B2. Applications –Seminar (contents)				
1	General properties of signals.				
2	Periodic signals.				
3	Impulses.				
4	Description of circuits.				
5	Bode plots.				
6	Sampled signals.				
7	Modulated signals.				

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

7 sets of pro	blems					
Individual study structure	Course study	Problem solving, laboratory, project	Applications preparation	Examination time	Additional reference study	Total no. of individual study hours
Hours	28	20	21	3	22	94

References (Textbooks, courses, laboratory manual, exercise book)

1. Victor POPESCU - Semnale, Circuite și Sisteme, partea I, Editura Casa Cărții de Știință, 2001

- 2. Marina Dana ȚOPA Semnale, Circuite și Sisteme, partea a II-a, Editura Casa Cărții de Știință, 2002
- 3. Victor POPESCU Semnale, circuite și sisteme III, Teoria circuitelor. Casa Cărții de Știință, 2003
- 4. Adelaida MATEESCU ş.a. Semnale şi Sisteme, Editura Teora, 2001
- 5. Ioana POPESCU, Erwin SZOPOS, Victor POPESCU, Marina Dana ȚOPA Semnale, circuite și sisteme. Îndrumător de laborator IV, Editura Casa Cărții de Știință, 2003.

On – line references http://193.226.5.66/scs/rom/ts_main.html

Final evaluation							
Evaluation method	Tests at the courses, seminars, laboratories and a final written exam. The exam consists						
	of questions on theory, multiple-choice questions and problems.						
Mark components	A total number of 100 points (for the maximum mark 10) are distributed as follows:						
	- 10p for the activity at the courses AC;						
	- 15p for tests at the courses C;						
	- 15p for seminar tests S;						
	- 10p for the laboratory tests L;						
	- 50p for the written exam E: 10p theory, 20p multiple-choice questions and 20p						
	problems.						
Mark computation	M = (C+S+L+E)/10 if E>20						

Course leader,

Prof. Marina ŢOPA, Ph.D.