SYLLABUS

Discipline name	Digital Electronics				
Profile	Electronics and Telecommunications Engineering				
Specialization	Telecommunications Technologies and Systems				
Code	51322109				
Course leader	Assistant Professor Mihaela Cirlugea, Ph.D.,				
	Mihaela.Cirlugea@bel.utcluj.ro				
Collaborators	Assistant Robert Groza, <u>Robert.Groza@bel.utcluj.ro</u>				
Department	Basis of Electronics				
Faculty	Electronics, Telecommunications and Information Technology				

Sem.	Type of discipline	Course	App	lication	ons	Course	Арј	plicat	tions	Ind. study	AL	S	Form of assessment
		[hours/week] [hours/s		em.]	.] [0]		Cre						
			S	L	Р		S	L	Р		Г	Ŭ	
3	Engineering	2	1	1	-	28	14	14	-	64	120	5	Exam

Acquired competences :

Acquired skills (what the student is able to do):

After completing the discipline, the students will be able to:

- understand the functioning and internal structure of digital circuits;

- analyze circuits and their behaviour;
- use design programs specific to digital circuits;
- deal with various representations of circuit behaviour;

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

After completing the discipline, the students will be able to:

- deal with different design programs depending of the needs of the circuit that has to be tested/designed
- easy compute and handle with numbers in 2 and 16 base
- synthesize logic problems of various complexity
- design, implement and simulate digital circuits on computer and on digital board

Prerequisites (if necessary)

bases of numeration, elements of logic and binary algebra .

A. (A. Course/Lecture (course/lecture titles)					
1	Introduction in the Binary Logic					
2	Boolean Algebra. Operations. Properties					
3	Combinational Logic Circuits. Logic Gates. Logic Functions.					
4	Function Minimization. Karnaugh Maps					
5	Multiplexers. Binary Trees					
6	Demultiplexers. Decoders.					
7	Arithmetic Operations with Logic Circuits					
8	Memories and Programmable Logic Arrays Basics					
9	Sequential Logic Circuits. Flip-Flops					
10	Synchronous and Asynchronous Counters with Flip-Flops					
11	Sequential Synchronous Automata with Flip-Flops					
12	Synchronous Counters					
13	Applications with Counters					

14 Sequential Synchronous Automata with Counters

B1.	Applications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)
1	Boolean Algebra, Karnaugh Mans

1	bootcan Algeora. Kamaugh Waps
2	Applications with Multiplexers
3	Applications with Demultiplexers and Decoders
4	Applications with Flip-Flops (counters, frequency dividers, signal generators)
5	Sequential Synchronous Automata with Flip-Flops
6	Applications with Synchronous Counters (counters, frequency dividers, signal generators)
7	Sequential Synchronous Automata with Counters

SYLLABUS

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

2 synthesis	2 synthesis reports								
6 sets of pro	6 sets of problems (the preparation part in every laboratory)								
3 sets of pro	3 sets of problems (course homework)								
Individual study structure	Course study	Problem solving, laboratory, project	Applications preparation	Examination time	Additional reference study	Total no. of individual study hours			
Hours	28	6	18	3	9	64			

References (Textbooks, courses, laboratory manual, exercise book)

1. M. Cîrlugea: Notes on Digital Electronics, Course. Applications

2. M. Cîrlugea: Laboratory manual (in progress)

3.V. Nelson, H. Nagle, B. Caroll, J. Irwin: Digital Logic. Circuit Analysis and Design, Prentice Hall, 1995 (Department's library)

4. John M Yarbrough: Digital Logic. Applications and Design, West Publishing Company, 1997 (Department's library)

5. M.D. Ercegovac: Introduction to Digital Systems, Ed. JohnWiley&Sons, 1999 (Department's library)

6. J. M. Rabaey :Digital Integrated Circuits, 2nd edition, John Willey, 2002 (Department's library)

7. Marcovitz: Introduction to Logic Design, McGraw Hill, New York, 2005

8. Morris Mano, Michael Ciletti: Digital Design, Prentice Hall, SUA, 2007

Final evaluation

Evaluation method	Written exam (E): problem solving (80%) and theoretical subjects (20%).
Mark components	Exam (E: 010 points); Laboratory (L: 010 points); Homework (H: 010 points);
Mark computation	M = 0.6E + 0.2L + 0.2H. Pass if: E≥4 and L≥4 and M≥4.5

Course leader,

Assist. Prof. Mihaela CÎRLUGEA, Ph.D.