SYLLABUS

Discipline name	Discrete Mathematics				
Profile	Electronics and Telecommunications Engineering				
Specialization	Telecommunications Technologies and Systems (English)				
Code	51322309				
Course leader	Assistant Professor Bogdan-Ionut Gavrea, Ph.D.				
	Bogdan.Gavrea@math.utcluj.ro				
Collaborators					
Department	Mathematics				
Faculty	Automation and Computer Science				

Sem.	Type of Discipline	Course	Applications Cours		Course	Applications		Ind.			Form of		
										study	TAL	Credits	assessment
		[hours/week]			[hours/week]				TO	C_{re}			
			S	L	Р		S	L	Р				
3	Fundamental	2	1	-	-	28	14	-	-	78	120	4	Exam

Acquired competences :

Acquired skills (what the student is able to do):

Mathematical models of discrete and continuous signals; the Z-transform and its inverse;

the discrete and continuous Fourier transform; the Fast Fourier Transform; the Laplace transform; basic probability theory: mathematical definition of the probability concept, conditional probability, Bayes formula,

the total probability formula, random variables/vectors (continuous and discrete), functions of random variables, numerical characteristics of random variables; brief overview of stochastic processes and Markov chains; introductory notions on interpolation theory.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

After taking this class the students should:

- Be able to work with the studied discrete and continuous transforms
- Be able to operate with probability rules
- Be able to work with random variables
- Be able to use basic polynomial interpolation theory.

Prerequisites (if necessary)

Mathematical Analysis 1st and 2nd semester

A. (Course/Lecture (course/lecture titles)					
1	Mathematical representation of discrete and continuous signals. Approximating continuous signals					
	by discrete signals. Convolution product of discrete signals. l_1 and l_2 signals. Discrete linear systems: causal					
	and non-causal systems, time-invariant systems.					
2	The Z-Transform. Basic properties of the unilateral Z-transform.					
3	The inverse Z-transform. Digital filters and the Z-transform.					
	Definition of the Discrete Fourier Transforms (DFT). Examples of applications of the DFT in signal					
	processing.					
4	Properties of the DFT. Parceval's identities. The Fast Fourier Transform (FFT)					
	and its computational advantages.					
5	The Laplace transform. Definition and properties of the transform.					
6	The Fourier transform on $L_1(\mathfrak{R})$ and $L_2(\mathfrak{R})$. The Cosine and Sine transforms.					
7	Basic probability theory. Field of events, probability space, probability measure.					
	Basic probability properties. Geometric interpretation of the probability measure.					
8	Conditional probability. Application: reliability of technical devices. Sequences of independent trials:					
	Bernoulli scheme, Poisson scheme.					
9	The total probability formula and Bayes formula.					
10	Random variables. Important discrete and continuous variables.					
11	Numerical characteristics of random variables. Functions of random variables.					
	Random vectors.					
12	A brief introduction to stochastic processes and Markov chains.					
13	Elements of interpolation theory: Lagrange interpolation.					
14	Elements of interpolation theory: Spline interpolation.					

1 Discrete and continuous signals. l_1 and l_2 signals. Discrete linear systems.

2 The Z-Transform. The inverse Z-transform. Digital filters and the Z-transform.

3 The DFT and FFT. The Laplace transform.

4 The Fourier transform on $L_1(\mathfrak{R})$ and $L_2(\mathfrak{R})$.

5 Basic probability theory. Conditional probability. Bayes' formula and the total probability formula.

6 Random variables, random vectors and Markov chains.

7 Elements of interpolation theory: Lagrange interpolation and spline interpolation.

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

- Seven sets of problems.

Individual	Lecture	Homework	Applications	Assessment	Supplementary	Total hours individual study
study	notes study	solving,	preparation	time	bibliographical	
structure		labs,			research	
		projects				
Nr. ore	28	36	-	6	8	78

D. Strategies and teaching methods

- conventional blackboard lectures.
- computer presentations (using video projectors) of applications and certain applied examples.
- office hours.

References (Cursuri, indrumatoare de lucrari, proiect, culegeri de probleme)

1. Gavrea, B., - Lecture Notes. Transforms and Basic Probability Theory.

2. Papoulis, A., - Signal Analysis, McGraw-Hill Book Company, 1977, ISBN (10) 007-048-460-0.

3. Atkinson, K., - An Introduction to Numerical Analysis, 2nd edition, John Wiley and Sons Inc., 1989, ISBN (10) 047-162-489-6.

4. Postolache, M., - Lecture Notes in Probability & Statistics, Fair Partners, 2003, ISBN: (10) 973-847-007-2.

Final evaluation	
Evaluation method	Writen paper – 3 hours containing theory and problems
Mark components	Exam (grade E); Seminar (grade S)
Mark computation	N=0,2S + 0.8E

Course Leader

Assistant Professor Bogdan-Ionut GAVREA, Ph.D.