SYLLABUS

Discipline name	Analysis and Synthesis of Circuits
Profile	Electronics and Telecommunications Engineering
Specialization	Telecommunications Technologies and Systems
Code	51322609
Course leader	Prof. Marina Țopa, Ph.D – <u>Marina. Topa@bel.utcluj.ro</u> ,
	Assoc. Prof. Victor Popescu – <u>Victor.Popescu@bel.utcluj.ro</u>
Collaborators	Assistant Ioana Popescu – Ioana. Popescu@bel.utcluj.ro
	Assistant Erwin Szopos – <u>Erwin.Szopos@bel.utcluj.ro</u>
	Assistant Botond Sandor Kirei – <u>Botond Kirei@bel.utcluj.ro</u>
Department	Basis of Electronics
Faculty	Electronics, Telecommunications and Information Technology

Sem.	Type of discipline	Course	App	licati	ons	s Course Applications		Ind. study	AL dits	dits	Form of assessment		
		[ho	urs/week]			[hours/sem.]					LO	Cre	
			S	L	Р		S	L	Р		L	•	
4	Engineering	2	1	1	I	28	14	14	-	94	150	5	Exam

Acquired	competences	:
----------	-------------	---

Acquired skills (what the student is able to do):

After completing the discipline, the students will be able to:

- Work with topological graphs and matrices for circuit analysis;

- Model a system with flowgraphs;
- Set up the state equations for a circuit;
- Analyze the stability of linear systems;

- Design matching circuits, passive constant-k and derived filters, ladder passive filters.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

After completing the discipline, the students will be able to:

- Use the OrCAD software for determining the frequency characteristics of a circuit, find its bands;
- Model in OrCAD transmission lines.

Prerequisites (if necessary)

Knowledge about electric signals, spectrum frequency, transfer function, methods for circuit analysis, electronic devices.

A. (A. Course/Lecture (course/lecture titles)			
1	Introduction. Topology of circuits.			
2	Flowgraphs.			
3	State variables space.			
4	Stability analysis.			
5	Criteria for stability analysis.			
6	Description of electric circuits.			
7	Passive one-ports.			
8	Passive two-ports.			
9	Impedance matching circuits. Simple circuits.			
10	Impedance matching circuits. Rejection of frequencies.			
11	Passive filters. Constant-k filters.			
12	Passive filters. Derived filters.			
13	Synthesis of circuits. Approximation and frequency transformation.			
14	Synthesis of circuits. Ladder passive filters. Active filters.			

B1.	B1. Applications – Laboratory (list of laboratories)				
1	Ist order systems.				
2	LP and HP IInd order filters.				
3	PB IInd order filters.				
4	Dual circuits.				
5	Elementary one-ports.				
6	Waves propagation and matching.				
7	Simple impedance matching circuits.				

SYLLABUS

B2.	B2. Applications – Seminar (contents)				
1	Topology. Graphs.				
2	Stability.				
3	State space.				
4	Passive two-ports.				
5	Impedance matching circuits.				
6	Passive filters.				
7	Circuits synthesis.				

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

7 sets of pro	blems	Ĩ				
Individual study structure	Course study	Problem solving, laboratory, project	Applications preparation	Examination time	Additional reference study	Total no. of individual study hours
Hours	28	20	21	3	22	94

References (Textbooks, courses, laboratory manual, exercise book)

1. Victor POPESCU – Semnale, Circuite și Sisteme, partea I, Editura Casa Cărții de Știință, 2001

2. Marina Dana ȚOPA - Semnale, Circuite și Sisteme, partea a II-a, Editura Casa Cărții de Știință, 2002

3. Victor POPESCU - Semnale, circuite și sisteme - III, Teoria circuitelor. Casa Cărții de Știință, 2003

- 4. Adelaida MATEESCU ş.a. Semnale şi Sisteme, Editura Teora, 2001
- 5. Ioana POPESCU, Erwin SZOPOS, Victor POPESCU, Marina Dana ȚOPA Semnale, circuite și sisteme. Îndrumător de laborator IV, Editura Casa Cărții de Știință, 2003.

On – line references

http://193.226.5.66/scs/rom/asc_main.html

Final evaluation						
Evaluation method	Tests at the courses, seminars, laboratories and a final written exam. The exam consists					
	of questions on theory, multiple-choice questions and problems.					
Mark components	A total number of 100 points (for the maximum mark 10) are distributed as follows:					
	- 10p for the activity at the courses AC;					
	- 15p for tests at the courses C;					
	- 15p for seminar tests S;					
	- 10p for the laboratory tests L;					
	- 50p for the written exam E: 10p theory, 20p multiple-choice questions and 20p					
	problems .					
Mark computation	M = (C+S+L+E)/10 if E>20					

Course leader,

Prof. Marina ŢOPA, Ph.D.