SYLLABUS

Discipline name	Analog Integrated Circuits
Profile	Electronics and Telecommunications Engineering
Specialization	Telecommunications Technologies and Systems
Code	51322709
Course leader	Prof. Lelia FEȘTILĂ, Ph.D. Lelia.Festila@bel.utcluj.ro
Collaborators	Assist. Prof. Gabor Csipkes, Gabor.Csipkes@bel.utcluj.ro,
	Assistant Robert Groza, <u>Robert.Groza@bel.utcluj.ro</u>
Department	Basis of Electronics
Faculty	Electronics, Telecommunications and Information Technology

Sem.	Type of discipline	Course	App	licati	ons	Course Applications Ind stud		Ind. study	AL	alits B	Form of assessment		
		[ho	nours/week]			[hours/sem.]				LO	Cre		
			S	L	Р		S	L	Р		Ľ	Ŭ	
4	Engineering	2	1	1	•	28	14	14	-	64	120	4	Exam

Acquired competences :

Acquired skills (what the student is able to do):

- Understanding basic operation principles of integrated components and devices.

- Identifying basic building blocks in complex integrated circuits.

- Defining specific parameters and performance of basic circuits.
- Analyzing component circuits of an OA.
- Combining elementary building blocks to implement more complex circuits.
- Analyzing circuit performance.

- Abilities to propose methods for improving performance based on the performance analysis.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

- Abilities in simulating circuits for proving the theoretical concepts
- Analyze and design some simple analog systems.
- gather and analyze data obtained by simulation
- experimentally determine the parameters of several circuits (gain, input-output resistance, pass band)

Prerequisites (if necessary)

Fundamentals of electrical and electronic circuits, electronic devices (BJ Transistors, MOSFETs, diodes, passive components), circuit theory (transfer functions, stability criteria)

A. (Course/Lecture (course/lecture titles)
1	- Microelectronics. Classification of Integrated Circuits. Terminology associated to CI design. An
	introduction
2	- Microdevices. Bipolar transistors, MOSFETs. Regions of operation. Large signal models
3	- Small signal models. Parasitic effects. Latch up in CMOS structures. Integrated Resistors and capacitors
4	- Current sources and sinks. Current mirrors. Parameters and basic configuration.
5	- Increasing output resistance of CSs. Cascode, regulated cascode. Lowering minimal CS output voltage.
6	- Current and voltage references. Parameters. Methods for compensating the effects of thermal and power
	supply voltage variation.
7	- V _{Th} /R, Widlar, V _{BE} /R, V _T /R, PTAT references. Self biasing circuits. Examples of integrated current and
	voltage references.
8	- Band-gap reference. Basic and very low voltage circuits. Applications
9	- One stage single input - single output v/v and i/v amplifiers. Small signal h.f. models. Parameters and
	basic integrated configurations.
10	- One stage differential amplifiers. Basic configurations. Applications.
11	- Improving DA performance: increasing gain, output swing, dynamic range
12	- Operational Amplifiers. Frequency characteristic compensation for OA stabilization /increasing BW and
	speed.
13	- Two stage Op Amps. Miller's compensation.
14	- Two or three stage Op Amps. Feed Forward compensation H. f. performance.

B1. Applications – Laboratory (list of laboratories), B2. Seminar (contents), Project (project contents)					
1	- Current sources and sinks Output stages				
2	– Current mirrors,				
3	– Current references				

4	– Voltage references
5	– Amplifier stages
6	- Op Amps architectures
7	– Revision and evaluation Tests.
B2 .	Seminar (contents)
1	- Bipolar transistor and MOSFET. Active resistance.
2	- Current mirrors. Current sources and sinks
3	– Current references. Design examples
4	– Voltage references. Design examples
5	- Analysis of various amplifier configurations. Part I
6	- Analysis of various amplifier configurations. Part II
7	- Analysis and design of OA circuits

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

7 sets of problems (the preparation part in every laboratory)

7 sets of problems (homework)

Course	Problem	Applications	Examination	Additional	Total no. of individual study
study	solving,	preparation	time	reference	hours
-	laboratory			study	
28	20	8	4	4	64
	Course study 28	Course studyProblem solving, laboratory2820	Course studyProblem solving, laboratoryApplications preparation28208	Course studyProblem solving, laboratoryApplications preparationExamination time282084	Course studyProblem solving, laboratoryApplications preparationExamination timeAdditional reference study2820844

References (Textbooks, courses, laboratory manual, exercise book)

1. Hans Camenzind Design Analog Chips 2005 (text book). www.designinganalogchip.com

- 2. Lelia Feștilă, Analog Integrated Circuits, UT PRES 2003
- 3. Lelia Feștilă, Circuite integrate analogice I, Ed. C.C.Ștință, 1997
- 4. Lelia Feștilă, Circuite integrate analogice II, Ed. C.C.Ștință, 1999
- 5. Lelia Feștilă, Doris Lupea, Circuite integrate analogice Culegere de probleme, Ed. Lito. UTCN, 2000.
- 6. P. E. Allen, D. Hollberg CMOS analog circuit design, Oxford Press 2003
 7. www.bel.utcluj.ro/ci/rom/cia1.html
- 8. www.HowtomakeanICappliedmaterials.com/HTMAC/animated.html

Final evaluation	
Evaluation method	Written exam consisting in problem solving and describing some theoretical subjects
Mark components	Laboratory: tests (grade T); Exam (grade E)
Mark computation	N=0.2T+0.8E

Course leader,

Prof. Lelia FEŞTILĂ, Ph.D.