SYLLABUS

Discipline name	Information Theory and Coding					
Profile	Electronics and Telecommunications Engineering					
Specialization	Telecommunications Technologies and Systems					
Code	51323509					
Course leader	Professor Monica BORDA, Ph.D – Monica.Borda@com.utcluj.ro					
Collaborators	Assistant Professor Sorin POP, Ph.D, Sorin.Pop@com.utcluj.ro,					
	Assistant Raul MALUTAN - Raul.Malutan@com.utcluj.ro					
Department	Communications					
Faculty	Electronics, Telecommunications and Information Technology					

Sem.	Type of discipline	Course	App	licati	ons	Course Applications		Ind. study	AL	Form of assessment			
		[hou	urs/w	eek]	[hours/semester]			LO	Cre				
			S	L	Р		S	L	Р		L	Ŭ	
5	Engineering	2	1	2	•	28	14	28	-	80	150	5	Exam

Acquired competences :

Acquired skills (what the student is able to do):

- Ability to model an information transmission system (statistically and informationally)
- Ability to compare different compression algorithms
- Ability to compare different channel coding techniques
- Understanding of the main lossless and lossy source coding algorithms
- Understanding of the main error control strategies and algorithms

Acquired abilities (what type of equipment/ instruments/ software the student is able to handle):

• Capability to design and implement source and channel coding algorithms

Prerequisites (if necessary):

Basics of probability theory, algebra fundamentals, digital circuits, analogical circuits.

A. (Course/Lecture (course/lecture titles)
1	Information transmission systems (ITS)
2	Statistical and Informational Model of an ITS (Discrete Memoryless Information Sources DMS, Measure of
	Discrete Information, Informational Entropy for a DMS, Source redundancy and Efficiency, The Entropy of
	an Extended DMS, Moments and Moment rate, Information rate. Decision rate
3	Statistical and Informational Model of an ITS (Discreet transmission channels: statistical and informational
	model, Channel Capacity)
4	Source Coding (C _s): aim, codes for information representation, compression ratio, coding efficiency, Kraft's
	and Mc Millan inequalities, Shannon's First Theorem
5	Shannon-Fano and Huffman Algorithms
6	Shannon's second theorem, Error control strategies, Parameters of error control codes
7	Linear block codes: definition and matrix description
8	Error syndrome, Detection and correction capability, Relations between the columns of Hmatrix for error
	detection
9	Hamming codes
10	Cyclic codes (BCH): Definition and representation, Algebraic encoding
11	Algebraic decoding (Peterson algorithm)
12	Non binary cyclic codes (Reed-Solomon)
13	Hardware implementations for cyclic codes
14	Convolution codes

B. A	B. Applications – Laboratory (list of 4 hours laboratories)				
1	Introduction. Information representation codes.				
2	Source coding (compression algorithm)				
3	Hamming codes				
4	BCH codes				
5	Reed Solomon codes				
6	Hardware implementation of cyclic codes				
7	Convolution codes				

SYLLABUS

Sem	Seminar (contents) – 2 hours				
1	Statistical model of an ITS				
2	Informational model of an ITS				
3	Compression				
4	Group Codes – Hamming codes				
5	BCH codes				
6	Reed Solomon Codes				
7	Convolution codes				

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

^		
2	synthesis	reports

12 sets of problems (the preparation part in every laboratory)

3 sets of problems (course homework)

5 50t5 01 p10	olems (cours	e noniework)				
Individual	Course	Problem	Applications	Examination	Additional	Total no. of individual study
study	study	solving,	preparation	time	reference	hours
structure		laboratory,			study	
		project				
Hours	28	31	18	3	-	80

References (Textbooks, courses, laboratory manual, exercise book)

- 1. Monica Borda Information Theory and coding. UT Press, 2007
- 2. R. Gallagher Information theory and reliable communication, John Willey and sons (1968).
- 3. R. Hamming, Coding and Information Theory, Prentice Hall, 1980.
- 4. G. Wade *Signal coding and processing*, Palgrave-McMillan, 2000.
- 5. B. Sklar, *Digital Communications*, Prentice Hall, 2001 (second edition)
- 6. Monica Borda Teoria Transmiterii Informației, Editura Dacia, 1999.

Final evaluation

r mai evaluation	
Evaluation method	Written exam (E): problem solving (70%) and theoretical subjects (30%).
Mark components	Exam (E: 010 points); Laboratory (L: 010 points); Homework (H: 010 points);
Mark computation	M = 0.6E + 0.2L + 0.2H. Pass if: E≥4 and L≥4 and M≥4.5

Course leader,

Professor Monica BORDA Ph.D.
