SYLLABUS

Radiocommunications
Electronics and Telecommunications Engineering
Telecommunications Technologies and Systems
51324209
Professor Tudor Palade, Ph.D – <u>Tudor.Palade@com.utcluj.ro</u>
Assistant Nicolae Crisan – Nicolae.Crisan@com.utcluj.ro
Communications
Electronics, Telecommunications and Information Technology

Sem.	Type of discipline	Course	11 11		Ind. study	DTAL	Form of assessment						
		[hours/week]			[hours/semester]			LO	Cre				
			S	L	Р		S	L	Р		E.	•	
6	Speciality	2	•	2	1	28	-	28	14	80	150	5	Exam

Acquired competences :

- Acquired skills (what the student is able to do):
 - characterize the behavior of the RF circuits
 - compute the parameters of the systems using appropriate tools
 - interpret and set up the RF equipment parameters
 - use RF electronic devices in different operating regimes;
 - determine the operating regime of RF devices;
 - determine the performances of RF simple electronic circuits;
 - use the basic applications of RF devices: AM and FM broadcasting, radiocommunication fixed links under different standards

Acquired abilities (what type of equipment/ instruments/ software the student is able to handle):

- study experimentally RF circuits and systems
- to develop design projects using software tools
- use the lab instrumentation (power supplies, oscilloscope, function generator, multi-meter) for the experimental study of simple RF circuits
- gather and analyze the numerical data obtained through the explorations
- experimentally determine the broadcasting transmitters and receivers characteristics
- experimentally determine the parameters of several radiocommunications systems (gain, transmitted and received power, signal to noise ratio, etc)

Prerequisites (if necessary):

Knowledge about microwave devices and circuits, electronic devices, integrated circuits, signals and systems.

A. (Course/Lecture (course/lecture titles)
1	Serial and paralel rezonance, Q factor, resonant circuits, channel bandwidth.
2	Low signal radio frequency amplifiers – designs techniques and analysis.
3	Serial and parallel coupling circuits, transformer coupling.
4	Hartley, Colpitts and Clapp oscillators' analysis, in and out tuned oscillators.
5	Untuned oscillators, oscillator's stability and spectral accuracy, quartz oscillators.
6	Power RF amplifiers, neutrodyne, CI and RF amplifiers, adaptive circuits.
7	AM modulating circuits.
8	Low noise amplifiers, mixers, FI amplifiers, AGC detectors and circuits.
9	Broadband FM and PM, VCO, multipliers, stereo emission.
10	FM detectors: flank, phase, ratio, quadrate, PLL demodulator, stereo reception.
11	DECT radio communications system: TDD and TDMA-TDD, DECT frame, protocol architecture.
12	WLL – Wireless Local Loop: propagation overview, OFDM, MMDS, LMDS.
13	Fix wireless broadband access - IEEE 802.16: architecture and services, physical and MAC layers.
14	802.11 standards: architecture and services, physical and MAC layers.

B. A	B. Applications – Laboratory (list of laboratories)			
1	Antennae used in radio communications.			
2	Radio frequency lines.			
3	RF amplifiers.			
4	RF oscillators.			

SYLLABUS

5	RF mixers.
6	High power RF amplifiers. Generators.
7	Frequency synthesis.
8	VHF/UHF Transceiver and transverter.
9	Stereo radio systems.
10	Broadband radio communication systems.
11	Broadband radio planning networks.
12	DSSS radio communications and Bluetooth systems.
13	GPS system.
14	Radio frequency measurements.

	Project (project contents)
1	Frequency synthesis using PLL.
2	RF mixers.
3	Microstrip antennae.
4	Radio channel modeling using SIMULINK.
5	OFDM- MATLAB simulation.
6	Minimizing ICI in OFDM.
7	Thermal noise modeling.
8	MIMO systems.
9	Improving RF oscillator parameters.
10	Cognitive receivers

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

synthesis	

3 sets of problems (course homework)

_						
Individual	Course	Problem	Applications	Examination	Additional	Total no. of individual study
study	study	solving,	preparation	time	reference	hours
structure	-	laboratory,			study	
		project				
Hours	28	13	28	3	8	80

References (Textbooks, courses, laboratory manual, exercise book)

1. Marinescu, N. – Radioreceptoare cu circuite integrate, Ed. Tehnica, Bucuresti, 1985.

2. Cipere, L., s.a. – Lucrari practice de depanare a radioreceptoarelor, Ed. Tehnica, Bucuresti, 1985.

3. Nicolau, Ed.- Manualul inginerului electronist- Radiotehnica I, II, III- Ed. Tehnica, '89, ISBN 973-31-0116-8

4. Mihalcea, A. – Sisteme moderne de comunicatii, Ed. Militara, Bucuresti, 1992, ISBN 973-32-0179-0

- 5. Feher, K. Comunicatii digitale avansate, Vol. I si II, Ed. Tehnica, Bucuresti, 1993, ISBN 973-31-0526-0
- 6. Palade, T. Tehnica microundelor, Genesis, Cluj-Napoca, 1997, ISBN 973-98204-3-3.
- 7. Baican, R. Circuite integrate de microunde Promedia Plus, Cluj-Napoca, 1998, ISBN 973-97377-6-5.

8. Palade, T., s.a. -Radiocomunicatii. Indrumator de laborator, Ed. Mediamira, '99, Cluj, ISBN 973-97791-2-3

9. Palade, T., s.a. – Radiocomunicatii. Culegere de probleme, Ed. Mediamira, '99, Clui, ISBN 973-97790-9-3

10. Remete, I. - Antene pentru unde ultrascurte și TV-DX, Ed. Tehnică, Bucuresti, 2000, ISBN 973-31-1285-2

11. Palade, T. - Radiocomunicatii celulare, Ed. Mediamira, Cluj-Napoca, 2001, ISBN 973-9358-35-7

12. Astilean, A. - Comunicatii fara fir, Ed. Mediamira, Cluj-Napoca, 2006, ISBN 973-713-111-8

13. Marza, E. - Radiocomunicatii, Ed. de Vest, Timisoara, 2007, ISBN 973-36-0374-0.

Final evaluation	
Evaluation method	Written exam (E): problem solving (70%) and theoretical subjects (30%).
Mark components	Exam (E: 010 points); Laboratory (L: 010 points); Project (P: 010 points);
Mark computation	M = 0.6E + 0.2L + 0.2P. Pass if: E≥4 and L≥4 and P≥4 and M≥4.5

Course leader,

Professor Tudor PALADE, Ph.D.