SYLLABUS

Internet Protocols
Electronics and Telecommunications Engineering
Telecommunications Technologies and Systems
51324609
Professor Virgil Dobrota, Ph.D – virgil.dobrota@com.utcluj.ro
Assistant Mihai Vancea – mihai.vancea@com.utcluj.ro
Comunications
Electronics, Telecommunications and Information Technology

Sem.	Type of discipline	Course	App	licati	ons	Course Applications I st		Ind. study	AL	Form of assessment			
		[hou	[hours/week]		[hours/semester]			LO	Cre				
			S	L	Р		S	L	Р		L	Ŭ	
7	Speciality	2	-	2	•	28	-	28	•	94	150	5	Exam

Acquired competences :

- To know the packet switching principles
- To know the major protocols used in Internet, according to TCP/IP stack
- To know the basics of routing protocols
- Acquired skills (what the student is able to do):
- To know the major TCP/IP commands used in Windows XP/Vista and Linux (Fedora Core 10)
- To be able to configure IPv4/IPv6 hosts with routing options
- To write a C-based TCP/UDP client/server application
- To evaluate the practical performances of an Internet protocol using a software packet analyzer

Acquired abilities (what type of equipment/ instruments/ software the student is able to handle):

- To work with Cisco routers (1750, 1812, 2501, 2811, 3000): address configuration, static routing, dynamic routing using RIP and OSPF
- To use Linux routers and Asterisk IP-based PBX under Fedora Core 10: address configuration, static routing, dynamic routing using RIP and OSPF
- To use packet analyzers: Wireshark, Ethereal
- To use zebra and quagga software packages

Prerequisites (if necessary):

Knowledge about computer networks, queueing systems, routing algorithms, C programming skills

A. (Course/Lecture (course/lecture titles)
1	TCP/IP Reference Model. Short history of Internet. TCP/IP Architecture. IPv4 Header.
2	IPv4 Addresses. IPv6 Header. IPv6 Extension Headers. Hop-by-Hop Header. Routing Header.
3	IPv6 Addresses. Unicast, multicast and anycast addresses.
4	IPv6 unicast addresses: unspecified, loopback, IPv4-compatible, global unicast, link-local, site-local.
5	IPv6 multicast addresses. IPv6 anycast addresses. Conclusions about IPv6. Comparison to IPv4
6	IP in mobile communications. Mobile Node. Home Agent. Foreign Agent. Care-of Address. Mobile IPv4.
	Mobile IPv6. Tunneling methods. IP in IP encapsulation
7	Transport Layer. TCP Header. UDP Header.
8	Client-server architecture. Client. Server. Berkeley sockets. TCP connection management. 3-Way
	Handshake. Finite-state machine
9	Protocols: ICMP, ICMPv6, ARP, RARP, BOOTP, DHCP, DHCPv6, DNS, DNS6
10	Routed/non-routed protocols. Distance-Vector based routing. Bellman-Ford algorithm. Routing protocols:
	RIPv1, RIPv2, RIPng.
11	Link-state based routing. Neighbor Discovery. Dijkstra's algorithm. Routing protocols: OSPFv2, OSPFv3.
12	TCP congestion control. Congestion prevention policies for Layer 2, 3 and 4. "Slow-start" and Congestion
	Avoidance algorithms.
13	Retransmission timer. Algorithms: Jacobson, Karn, Bakre-Badrinath, Balakrishnan. Fast Retransmit/Fast
	Recovery algorithms
14	Review. Examples of subjects given in the previous academic year

B. A	B. Applications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)						
1	IPv4 addresses. Host address. Subnet address. Subnet mask. (seminar)						
2	Linux/Windows-based commands for IPv4: w, who, finger, ping, traceroute, tracert, telnet, ssh, putty, ftp, us, ftp, talk, pine						
	ws_tp, tak, plic						

SYLLABUS

3	Linux/Windows-based commands for IPv6: ping6, traceroute6, tracert6, ssh.
4	Packet analyzers: Ethereal, Wireshark.
5	Configuration of Linux/Windows-based workstations for IPv4: address, mask, DNS, gateway, proxy.
	Configuration of Linux/Windows-based workstations for IPv6. IPv6 addresses. Auto-configuration. Routing
	options
6	Client-server architecture. Datagram-socket. Stream-socket. Primitives: socket, bind, listen, select, accept,
	send, receive, connect, close. TCP/UDP clients and servers.
7	Mini-projects involving: a) TCP client running on each team's workstation under Windows XP, with IPv4
	protocol enabled; b) IP PBX Asterisk runs on a computer with a given IPv6 address under Fedora Core 10
	Linux, with IPv6 protocol enabled; c) TCP server is waiting clients at a given port. An IPv6 client and an
	IPv4 server have to be implemented with given functionalities.
8	IPv6 client implementation: commands sent and received (core show uptime, core show version, core show
	channels etc.) to/from IP PBX Asterisk.
9	IPv4 server: connections and commands from given IPv4 client, returning the confirmation
10	Defending the mini-project
11	ICMP, ICMPv6, ARP, RARP, BOOTP, DHCP, DHCPv6, DNS, DNS6.
12	Zebra/quagga software. Distance-vector based routing protocols: RIPv1, RIPv2, RIPng
13	Link-state based routing protocols: OSPFv1, OSPFv2, OSPPv3
14	Recovered laboratories

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

- 1. A Linux-based IPv6 client has to be implemented with given functionalities. Commands will be sent to an Asterisk IP-based PBX.
- 2. A Linux-based IPv4 server has to be implemented with given functionalities. Commands will be received from a Windows-based IPv4 client.

Individual study structure	Course study	Problem solving, laboratory, project	Applications preparation	Examination time	Additional reference study	Total no. of individual study hours
Hours	28	36	18	3	9	94

References (Textbooks, courses, laboratory manual, exercise book)

- 1. V.Dobrota, *Retele digitale in telecomunicatii. Volumul 3: OSI si TCP/IP.* Editia a II-a, Editura Mediamira, Cluj-Napoca 2003
- 2. D.Zinca, Retele de calculatoare. Editura Risoprint, Cluj-Napoca 2006
- 3. L. Peterson & B. Davie Computer Networks. A Systems Approach. 4th Edition. Elsevier Inc., 2007
- 4. A. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall, 2003
- 5. D.E. Comer, Computer Networks and Internets with Internet Applications. 4th Edition, Pearson 2004
- 6. P. Loshin, *IPv6 Clearly Explained*. Morgan Kaufmann, 2000

On – line references

- 1. V. Dobrota, Protocols for Internet, Course and Applications, <u>http://el.el.obs.utcluj.ro/pi/en_index.htm</u>
- 2. ***, Asterisk: http://www.voip-info.org/wiki/index.php?page=Asterisk
- 3. ***, Berkeley sockets: http://en.wikipedia.org/wiki/Berkeley_sockets

Final evaluation

Evaluation method	Exam including 2 parts (theory + applications): a test (T) with 9 questions from course and
	laboratory (1 hour) and a multiple-choice grill test (P2) covering all chapters (1 hour). The mark
	obtained for the mini-project (P1) represents 50% of the mark for applications.
Mark components	Test (T)= 010 p, Problems P=P1+P2=010 p, Problem P1=project=05 p, Problem
	P2=05 p.
Mark computation	N=(T+P)/2, the credits are obtained if N \geq 5; T \geq 5; P \geq 4.5 (P1 \geq 2.5, P2 \geq 2)

Course leader,

Professor Virgil DOBROTA, Ph.D.

2