SYLLABUS

Discipline name	aname Audio-Video Digital Techniques			
Profile	Electronics and Telecommunications Engineering			
Specialization	Telecommunications Technologies and Systems			
Code	51325009-1			
Course leader	Professor Radu Arsinte, Ph.D – <u>Radu.Arsinte@com.utcluj.ro</u>			
Collaborators				
Department	Communications			
Faculty	Electronics, Telecommunications and Information Technology			

Sem.	Type of discipline	Course	App	licati	ons	Course Applications		Ind. study	AL	dits	Form of assessment		
		[hours/week]		[hours/semester]					LO	Cre			
			S	L	Р		S	L	Р		L	Ŭ	
7	Speciality, Optional	2	•	1	1	28	-	14	14	64	120	4	Verification

Acquired competences :

Acquired skills (what the student is able to do):

- Interconnect audio-video equipment with different processing and storage equipment
- Evaluation of functionality of audio-video equipment using presentation and/or service manual
- Interconnection and integration of processing and recording equipment in systems with complex functionality including computer controlled devices
- Creation of complex processing functions for audio-video signals using a general purpose programming language
- Streaming of acquired audio-video information in an appropriate format using communications protocols and tools

Acquired abilities (what type of equipment/ instruments/ software the student is able to handle):

- measure the main qualitative parameters for an audio-video system using classical or computerized equipment
- measure the bit error rate of an physical informational support, signal to noise ratio, binary throughput of different audio-video streams
- acquire audio and video content, process this content and create physicals supports with audio-video content (CD, VCD, DVD)
- Use computerized equipment for audio and video acquisition, with internal or external devices
- Modify the software support of internal audio-video boards (sound card, tuner board) to achieve new performances and functionality
- use of standalone equipment (spectrum analyzer) to evaluate audio qualtiy
- use of standalone equipment (video generator, digital video generator) to evaluate performances of video links

Prerequisites (if necessary):

Basic knowledge of video systems (television), signal processing, programming (C), error detection and correction codes.

A. 0	Course/Lecture (course/lecture titles)
1	Informational aspects of audio signals. Human hearing characteristics. Electrical – acoustical characteristics.
2	Audio signal digitization. Digital processing of audio signal. Analog to digital conversion of audio signal.
	Music and voice signal formatting.
3	Magnetic recording. Analog magnetic recording. Digital magnetic recording. DAT system.
4	Audio optical recording; principles, optical aperture
5	Informational aspects. Functional versions: Audio CD, VCD, CDROM
6	Main parameters of digital audio systems. Frequency response, distortions, cross-talk
7	Special audio effects in digital technology. Echo, noise suppression
8	Digital interfaces in audio technology. Serial interfaces. PC based implementations
9	Informational characteristics of video signal. Video signal statistics. B/W and color entropy
10	Video signal digitization. Digital preprocessing of video. Preprocessing of video signals (clamp, filtering).
	Analog/digital conversion.
11	Primary video sources Analog and digital video recorders. Rotary head principle.
12	Compression techniques adaptation for audio-video optical and magnetic storage. Video compression
	principles. Commercial video formats: MPEG 2, MPEG4
13	Audio-video optical storage: DVD, HD-DVD, BluRay. High density recording principle. Logical and

SYLLABUS

- informational organization of storage supports
- 14 Integrated audio-video processing systems based on high performance computers. Nonlinear audio-video

editing. Workstations and software for nonlinear editing

B. A	pplications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)
1	Audacity audio processing environment. Audio acquisition and conversion using Audacity.
2	Noise reduction techniques using Audacity.
3	Audio system performance evaluation using PC
4	Video acquisition programs. VirtualDub. Video filtering under VirtualDub
5	Video acquisition in computer environment. Audio-video device management under Windows and Linux.
6	Codes used in optical and magnetic storage
7	Laboratory test
	Projects
1	Project presentation. Project planning
2	Audio information acquisition and preprocessing using Audacity
3	Video information acquisition using CVBS video sources
4	Video information acquisition from streaming sources
5	Audio video content creation for CD/DVD using VirtualDub and Ulead Video Studio
6	Evaluation of different options for the support (CD, DVD)
_	

C. Individual study (reference study contents, synthesis materials, projects, applications etc.) 12 sets of problems and questions (the conclusion part in every laboratory) 6 sets of problems (course homework)

1		,				
Individual study	Course study	Problem solving,	Applications preparation	Examination time	Additional reference	Total no. of individual study hours
structure		laboratory,			study	
		project				
Hours	28	6	18	3	9	64

References (Textbooks, courses, laboratory manual, exercise book)

- 1. Jerry C. Whitaker, Blair K. Benson, *Standard Handbook of Audio and Radio Engineering*, McGraw-Hill Professional, 2002
- 2. Editor Ian R. Sinclair Audio and Hi-Fi Handbook Third Edition, Newnes, Reed Educational and Professional Publishing 1998
- 3. Stefan Winkler, Digital Video Quality Vision Models and Metrics, John Wiley and Sons, 2005
- 4. F. Alton Everest, Master Handbook of Acoustics, McGraw Hill, 2001

On – line references

- 1. R. Arsinte, Audio-Video Digital Techniques, http://users.utcluj.ro/~arsinte/TDAV
- 2. R.Arsinte ., Audio-Video Digital Techniques, http://users.utcluj.ro/~arsinte/TDAV

Final evaluationEvaluation methodWritten exam (E): problem solving (30%) and theoretical subjects (70%).Mark componentsExam (E: 0...10 points); Laboratory (L: 0...10 points); Project (P: 0...10 points);Mark computationM = 0.5E + 0.25L + 0.25P. Pass if: $E \ge 4$, $L \ge 4$, $P \ge 4$ and $M \ge 4.5$

Course leader,

Professor Radu Arsinte, Ph.D.