SYLLABUS

ctronics and Telecommunications Engineering
ecommunications Technologies and Systems
25309-2
fessor Mircea Giurgiu, Ph.D – Mircea.Giurgiu@com.utcluj.ro
g. Adriana Stan, Ph.D. student, <u>Adriana.Stan@com.utcluj.ro</u>
nmunications
ctronics, Telecommunications and Information Technology

Sem.	Type of discipline	Course	App	licati	ons	Course	rse Applications		tions	Ind. study	CAL	dits	Form of assessment
		[ho	urs/w	veek]		[hours/semester]			LO	Cre			
			S	L	Р		S	L	Р		Ľ	•	
8	Speciality, Optional	2	•	1	1	28	-	14	14	94	150	5	V

Acquired competences :

Acquired skills (what the student is able to do):

• to design a speech acquisition system connected to the PC

• to identify and to interpret the main features of the speech signal, including statistical distribution

• to implement the algorithms for speech processing in time, frequency, domain and to interpret the results

- to be able to interpret the processing flows for various speech coders: LPC, ADPCM, subband, RPE-LTP, etc.
- to be able to apply the most suitable schemes for adaptive filtering and noise enhancement of speech

• to be able to consider the appropriate decisions the speech processing flows in any telecom application.

Acquired abilities (what type of equipment/ instruments/ software the student is able to handle):

- to handle the specific tools for speech processing: CoolEdit, PRAAT, SFS, VoiceBox, WaveSurfer, MAD.
- to easily program in Matlab (or similar signal processing environments) the specific applications for speech processing and to run dedicated experiments that involves data analysis and interpretation
- to test most of the speech codecs with the aim to take appropriate implementation decisions in specific telecom environments (fixed lines, optical fibers, VoIP, mobile communications, etc) and other speech applications.
- to use specific Matlab toolboxes dedicated to speech processing: spectral analysis, wavelet analysis, entropic coding of speech.
- to implement and to experiment specific algorithms for: speech recognition, speech synthesis, speech coding.

Prerequisites (if necessary):

Knowledge about: a) signals and systems: analog/digital signals, Fourier transform transfer functions, system stability; b) digital signal processing: digital filters, FIR, IIR; c) information theory: entropy, mutual information, Markov modeling of information sources, information coding/compression; d) digital communications: errors, modulations; e) programming: fundaments of Matlab, C/C++, OOP.

A. (A. Course/Lecture (course/lecture titles)					
1	Introduction. Features of the speech signal (acoustics, statistics, models for speech productions).					
2	Digital modeling of speech.					
3	Methods for speech analysis in time domain (energy, zero crossing, autocorelation, AMDF, TESPAR).					
4	Methods for speech analysis in frequency domain (Fourier, subband).					
5	Cepstral analysis. Speech analysis using wavelet transform.					
6	Techniques for speech coding in time domain and applications for VoIP (PCM, ADPCM, Delta)					
7	Subband speech coding.					
8	Speech coding in MPEG standard: MPEG1 (Layer 1,2,3), MPEG2, MP3, AC3 algorithm.					
9	Speech coding using analysis by synthesis technique (MPE, RPE-LTP, CELP).					
10	Speech coding in GSM. Half rate coder and the VAD.					
11	Speech compression by Vector Quantization. The algorithms: Lloyd, LBG.					
12	The principles of Text to Speech Synthesis (TTS). Automatic control of intonation (PSOLA/TD-PSOLA).					
13	Techniques for Automatic Speech Recognition: DTW, ANN-MLP, HMM.					
14	Synthesis of the course and preparation for exam.					

B. Applications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)					
Laboratory (1 L)					
1	Robust algorithm for speech endpoint detection using the energy and the zero crossing rates.				
2	Estimation of fundamental frequency of speech by autocorrelation and AMDF methods.				
3	Spectral analysis of speech by FFT. Fundamental frequency estimation by cepstral analysis.				

SYLLABUS

- 4 Linear Predictive Analysis. Speech synthesis from LPC coefficients.
- 5 Speech coding by using ADPCM and IMA-ADPCM (performance evaluation of the methods).
- 6 Implementation of a GSM RPE-LTP speech coder and evaluation of the performances.

7 Implementation and evaluation of the methods to change the F0 (PSOLA si TD-PSOLA).

Project (1 P)

Project planning (Presentation of the project themes, the students select the project, project schedule)

2 Analysis and documentation on scientific and technical background

3 Implementation. Designing the software and speech processing models.

4 Implementation. Report I.

5 Implementation. Report II.

6 Experiments and interpretation of results

7 Project submission.

C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

Reports with the results obtained in the laboratory, scientific documentation for the project, project implementation, team-working to produce the experimental results.

udy

References (Textbooks, courses, laboratory manual, exercise book)

UTC-N Library:

- 1. R. Martin, sa, Advances in digital speech transmission, Chichester, West Sussex, 2008.
- 2. M. Giurgiu, *Compresia semnalului vocal in aplicatii multimedia*, Ed. Risoprint Cluj-Napoca, 2003.
- 3. M. Giurgiu, Sinteza din text a semnalului vocal. Vol I., Editura Risoprint, Cluj-Napoca, 2006.
- 4. S. Furui, Digital Speech Processing, Synthesis and Recognition, New York, 2001.
- 5. D.G, Childers Speech Processing and Synthesis Toolboxes, Wiley Publ., 2000
- 6. F. Jelinkek Statistical methods for speech recognition, London, 1999.
- 7. H. Dybkjaer Designing interactive speech systems : from first ideas to user testing, Berlin, 1998.
- 8. R Boite, M Kunt Traitement de la parole, Presse Politechnique Romandes, Lausanne, 1987.
- 9. G. Stolojanu, Prelucarea numerica a semnalului vocal, Ed Militara, 1984
- 10. M. Draganescu, Analiza si sinteza semnalului vocal, Ed. Academiei, 1986
- 11. E. Pupu, P. Pop *Prelucrarea Numerica a Semnalului Vocal*, Ed. Risoprint, Cluj, 2004 *Online materials:*
- 12. M. Giurgiu Compresia semnalului vocal in aplicatii multimedia, www.concorde.utcluj.ro
- 13. O serie de resurse din Internet, recomandate de catre grupul de specialisti din European Language and Speech Network

Other libraries (or available in the lab):

- 14. K. Ponting, Computational Models for Speech Pattern Processing, Springer Verlag, 1997
- 15. S. Furui, Digital Speech processing, Synthesis and Recognition, Marcel Dekker, 1989
- 16. E. Keller, Fundamentals of Speech Synthesis and Speech Recognition, John Willey & Sons, 1994
- 17. A. M. Kondoz, Digital Speech Coding for Low Bit Rate Communications Systems, John Willey, 1995 L
- 18. L.R. Rabiner, Digital Processing of Speech Signals, Prentice Hall, 1978
- 19. P. Papamichalis, *Practical Approaches to Speech Coding*, Prentice Hall, 1995

Final evaluation

Evaluation method	Final examination (FE). Laboratory activity and experimental reports (LB). Project (P)
Mark components	Final Exam (06), Project (02), Laboratory activity and reports (02).
Mark computation	$\mathbf{M} = \mathbf{L}\mathbf{B} + \mathbf{P} + \mathbf{F}\mathbf{E}.$

Course leader,

Professor Mircea GIURGIU, Ph.D.

2