SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/
	Trogram of study/Qualification	Engineer, Applied Electronics/ Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E01.00, EA-E01.00

2. Data about the subject

2.1	Subject name				Mathematical Analysis						
2.2	Subject area				Mathematics						
2.3	Course responsible/lecturer				Prof. mat. Dorian POPA, PhD						
2.4	Teachers in charge of applications				Prof. mat. Dorian POPA, PhD						
2.5	Year of		2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject	DF/
	study									category	DOB

3. Estimated total time

Year/ Sem.	Subject name	No. of	Course Applications			Course	rse Applications Ir			Indiv. study	۹L	its	
		weeks	[hou	urs/week]		[hours/sem.]				DT.	Cred		
				S	L	Ρ		S	L	Р		F	0
1/1	Mathematical Analysis	14	2	2			28	28			74	130	5

3.1	Number of hours per week	4	3.2	of which,	2	3.3	applications	2
				course				
3.4	Total hours in the curriculum	42	3.5	of which,	28	3.6	applications	28
				course				
Indivi	dual study							Hours
Manual, lecture material and notes, bibliography							40	
Supplementary study in the library, online and in the field							-	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28	
Tutoring								3
Exams and tests							3	
Othe	r activities							0
3.7	Total hours of individual study		74					
38	Total hours per semester		130					

3.8	Total hours per semester	130
3.9	Number of credit points	5

Acquired competences :						
Acquired skills (what the student is able to do):						
Notions and concepts concerning sequences, series, power series, complex functions, trigonometric and Fourier						
series, metric spaces, partial derivatives, local extrema, conditional extrema, implicit functions.						
Acquired abilities: (what type of equipment/instruments/software the student is able to handle)						
To operate with numerical and functions series.						
To operate with the concepts of metric spaces.						
To operate with partial derivatives and the differential of a function.						
To determine the local extrema and the conditional extrema of functions.						
To operate with implicit functions.						
Proragnisitas (if nocessary)						

Prerequisites (if necessary)

Elementary notions on mathematical analysis, algebra and trigonometry.

A. Course/Lecture (course/lecture titles)

- Course 1 The sets R and C. Sequences.
- Course 2 -Series of real and complex numbers.
- Course 3 Series with positive terms.
- Course 4 Sequences and series of functions. Power series.
- Course 5 Taylor formula. Taylor series.Complex elementary functions.
- Course 6- Trigonometric series. Fourier series.
- Course 7 Metric spaces. Topology of a metric space.
- Course 8 Partial derivatives. The directional derivative.
- Course 9 The differential of a function.
- Course 10 Local extrema of a function.
- Course 11 Implicit functions.
- Course 12- Conditional extrema.
- Course 13 Improper integrals.
- Course 14 Integrals delpendent on parameters.

B1. Applications – Laboratory (list of laboratories), Seminar (contents), Project (project contents)

	$-\mathbf{F}\mathbf{F}$						
1	Seminar 1 – Sequences of real and complex numbers.						
	Seminar 2 – Series of real numbers.						
	Seminar 3 – Series of complex numbers						
	Seminar 4 – Series of functions.						
	Seminar 5 – Power series. Applications.						
	Seminar 6 – Complex functions. Applications.						
	Seminar 7 – Trigonometric series. Fourier Series.						
	Seminar 8 – Metric spaces. Applications						
	Seminar 9 – Partial derivatives						
	Seminar 10 – Problems with partial derivatives.						
	Seminar 11 – Local extrema.						
	Seminar 12 – Implicit functions						
	Seminar 13 – Conditional extrema.						
	Seminar 14 – Generalized integrals.						
C. I	ndividual study (reference study contents, synthesis materials, projects, applications etc.)						
2 sy	nthesis reports						
12 s	12 sets of problems (the preparation part in every laboratory)						
3 se	3 sets of problems (course homework)						
Ref	References (Textbooks, courses, laboratory manual, exercise book)						
1.	Dorian Popa, Calculus – Mediamira Cluj-Napoca, 2006.						
2.	O. Stănășilă, Analiză matematică, EDP București, 1981.						
3.	N. Vornicescu, D.M.Ivan, D. Popa, Calcul diferențial, Editura Mediamira, 2004.						
4	M. Ivan, Calculus, Mediamira Clui-Napoca, 2004.						

M. Ivan, Calculus, Mediamira Cluj-Napoca, 2004.
G.N.Berman, A problem book in Mathematical Analysis, Mir Publisher, Moscow, 1977.

Final evaluation

I mai crataation	
Evaluation method	Writen paper – 3 hours containing theory and problems. After 7 courses partial evaluation (3 hours)
Mark components	Seminar S Theory T Problems P
Mark computation	N=0,2S+0,2T+0,6P

Date of filling in	Course responsible
18.03.2015	Prof. Dorian POPA, PhD

Date of approval in the department 18.03.2015

Teachers in charge of applications Prof. Dorian POPA, PhD

> Head of department Prof. Mircea IVAN, PhD