

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Electronics, Telecommunications and Information Technology				
1.3	Department	Applied Electronics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	TST-E102.00				

2. Data about the subject

2.1	.1 Subject name			Sensors and Transducers							
2.2	2.2 Subject area			Sensors, measurements circuits, data analysis							
2.3	Course responsible/lecturer				Assistant Prof. Septimiu Pop, PhD						
2.4	Teachers in cha	arge of a	applications	tions Assistant Vlad Bande, PhD							
2.5	Year of study	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DS/ FAC	

3. Estimated total time

Year/	Subject name	No.	Course Applications Co		Course Applications			Indiv.					
Sem.		of								study	-AL	dits	
		weeks	[hours/week]		[hours/sem.]			n.]		- ⁻	Credits		
				S	L	Ρ		S	L	Ρ			0
III / 1	Sensors and	14	2		2		28		28		74	130	5
111 / 1	Transducers		2		4		20		20		/ 4	150	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Individual study He								
Manual, lecture material and notes, bibliography								40
Supp	lementary study in the library, onl	line a	nd in th	e field				-
Prepa	aration for seminars/laboratory wo	orks,	homewo	ork, reports, portfo	lios,	essays	i	28
Tutor	ing							3
Exams and tests							3	
Other activities								0
3.7	Total hours of individual study		74					

0.7	Total fiburs of individual study	/4	
3.8	Total hours per semester	130	
3.9	Number of credit points	5	

4. Pre-requisites (where appropriate)

4.1	Curriculum	N / A
4.2	Competence	Operating principles for electronic devices: resistor, capacitor, diode, operational amplifier, MOSFET and BJT transistors, theoretical analyses of electrical circuits: voltage transfer characteristics; transfer function, embedded systems, data acquisitions, data analyses.

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca				
5.2	For the applications	Laboratory, Cluj-Napoca				

6. Specific competences

	Theoretical knowledge (what the student must know):	The electrical characteristics of basic electrical device. Theoretical analyses of electrical circuits: voltage transfer characteristics; transfer function, data acquisitions, digital signal processing, microcontroller.
Professional competences	Acquired skills (what the student is able to do):	After completing the discipline, the students will be able to: Understand sensors and transducers behavior: electrical equivalent model, electrical parameters, and transfer functions. The measurements circuit; to design an appropriate schema for measurements of a lot of sensors' type. Integrate the sensors and conditioning circuit into electrical systems with the microcontroller, Analyze the data obtained through measurements of sensors in statistical conditions and when the physical parameter evolution is described by a mathematical equation.
	In accordance Acquired abilities: (what with Grila1 type of equipment the student and Grila2 is able to handle) RNCIS	 After completing the discipline, the students will be able to: use a lot of sensors type, resistive, capacitive, inductive, optic, acoustic, piezoelectric, the lab instrumentation (power supply, oscilloscope, function generator, multimeter) for the experimental study of sensors and measurement circuits use the experimental boards connect the lab instrumentation with the experimental boards, in order to experimentally study the sensors use the computer to the numerical data obtained through the explorations store and analyze the numerical data obtained through the explorations N.A.
Cross	competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	To understand sensors and transducers behavior and to develop and analyze the measurement circuits
7.2	Specific objectives	 Understanding sensors and transducers characteristics and linear and non-linear transfer function Developing skills into measurement circuits Understanding of a measuring chain and compute of an inverse transfer function.

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Introduction into sensors transducers and actuators, description, parameters and classification.	- D	
2	Resistive sensors for temperature, movement, strain and humidity measurement	ation ercise on	ctor,
3	Capacitive sensors for level and vibration measurement	ex ex lati	oje
4	Inductive sensor for proximity, movement and a special study of the vibrating wire transducer	, temp ching evalu	n, pre
5	Sensors with semiconductor, temperature, hall, photodiode and piezoelectric transducers	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	.ppt presentation, projector, blackboard
6	Force, Pressure and Flow sensors	sat satio atio	ese
7	Optical encoder	y, f	blå
8	Conditioning circuits with current source	onvesse	ppt
9	Conditioning circuits with AD7705 an 555	bre st	- L
10	Conditioning circuits with analog digital convertor and counter	em ase	0 0
11	Smart sensors		Use of
12	Processing technique of data obtained from the sensor measurement	pro pro	
13	Interfaces and sensors network		
14	Recapitulation. Preparation for the final exam.		
8.2.	Applications (lab)	Teaching methods	Notes
1	PSpice model for RTD, capacitive sensors		
2	PSpice model for vibrating wire transducer	, of	ion irs,
3 4 5 6	Temperature sensor, RTD, NTC	or	ute
4	Capacitive level sensor	a s	laboratory instrumen imental boards, comp white/magnetic board
5	Industrial proximity sensor	ante	
	Vibrating wire transducer	, te	istr Is, ic h
7	Optical encoder	se	/ in ard
8	Hall sensor, current sensor	exp	tor) bo; agi
9	Humidify and light sensor	pr a	mat /m
10	Measure of heart rate with optical sensor	licar	abc ent
11	Ultrasonic sensor in distance measurement	Didactic and experimental proof, didactic exercise, team work	Jse of laboratory instrumentation experimental boards, computers, white/magnetic board
12	Industrial sensors with 4-20mA and 0-5V output signal	dac did	e ol
13	Laboratory test	ā	Use of laboratory instrumentation, experimental boards, computers, white/magnetic board
			_
14	Lab recovery and finalization of laboratory activity		
	Lab recovery and finalization of laboratory activity ography		

2. Analog Device, Transducer Interfacing Handbook, 1980, Massachusetts, USA.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the			
						final grade			
Course		The level of acquired		- 3 formative evaluation		- T, max 10 pts.			
		theoretical knowledge and		tests (problem solving)		20%			
		practical skills		- Summative evaluation					
				written exam (theory		- E, max 10 pts.			
				and problems)		60%			
Applications		The level of acquired abilities		- Continuous formative					
				evaluation		- L, max. 10 pts.			
				- practical lab test		20%			
10.4 Minimum standard of performance									
	L≥5 and E≥4 and 0,6E+0,2L+0,2T≥4.5								

10. Evaluations

Date of filling in 01.02.2015

Course responsible Assist. Prof. Septimiu Pop, PhD Teachers in charge of applications Assist. Vlad Bande. PhD

Date of approval in the department 01.02.2015

Head of department Prof. Dorin Petreus, PhD