

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca			
1.2	Faculty	Electronics, Telecommunications and Information Technology			
1.3	Department	Applied Electronics			
1.4	Field of study	Electronics and Telecommunications Engineering			
1.5	Cycle of study	Bachelor of Science			
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer			
1.7	Form of education	Full time			
1.8	Subject code	TST-E106.00			

2. Data about the subject

2.1	Subject name				Power Electronics								
2.2	2 Subject area			Powe	Power electronic devices and circuits								
2.3	3 Course responsible/lecturer					Asso	Assoc. Prof. Niculaie Palaghita, PhD eng.						
2.4	2.4 Teachers in charge of applications			ons		Assoc. Prof. Cristian Farcas, PhD eng., Assistant Ionut Ciocan, PhD eng.							
2.5	Year of study	Ш	2.6	Semester	2	2.7	Assessment	Exam	2.8	Subject category	DS/FAC		

3. Estimated total time

Year/ Sem.	Subject name	No. of	Course	Арр	olicati	ons	Course	Applications		Applications Indiv. study		LAL	redits
		weeks	[hours/week]			[hours/sem.]				6	Cre		
				S	L	Р		S	L	Р			U
III / 2	Power Electronics	14	2	-	2	1	28	-	28	14	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4	Total hours in the curriculum	70	3.5	of which, course	28	3.6	applications	42
Individual study h								hours
Manual, lecture material and notes, bibliography							28	
Supplementary study in the library, online and in the field								-
Prepa	aration for seminars/laborate	ory work	s, home	work, reports, portf	folios	s, essays		28
Tutori	ing							2
Exams and tests								2
Other activities								-
3.7	Total hours of individual st	udy	60					

3.7	l otal hours of individual study	60	
3.8	Total hours per semester	130	
3.9	Number of credit points	5	

4. Pre-requisites (where appropriate)

4.1 Curriculum N / A								
4.2	4.2 Competence Knowledges about the electronic devices and their use in electronic circuits							
5.	5. Requirements (where appropriate)							
5.1	5.1 For the course Amphitheatre, Cluj-Napoca							
5.2	For the applications	Laboratory, Cluj-Napoca						

6. Specific competences

	Theoretical knowledge: (what the student must know):	After completing the discipline, the student will know: - operating principles of the power electronic devices and their use in the specific applications; - techniques for analysis and design of a power electronic circuit; - appropriate software for simulation and modeling of power electronic circuits and their classification according to their benefits and limitations; - methods for evaluation and interpretation of data obtained from the design, simulation and testing of the power electronic circuits;
Professional competences	Acquired skills: (what the student is able to do):	After completing the discipline, the students will be able to: - use power electronic devices in both, ON and OFF, operating regimes; - design and implement the specific drivers for the studied power electronic devices; - analyze and experimentally determine the performances of the power electronic circuits; - use the appropriate methods for monitoring and testing the power electronic circuits; - describe the techniques for linear PWM modulation, sinusoidal PWM and space vector PWM; - use dedicated integrated circuits for various drivers;
	Acquired abilities: (what type of equipment the student is able to handle)	 After completing the discipline, the students will be able to: use the experimental laboratory boards and simulation tools used to identify the operating principles of power devices and circuits studied use the lab instrumentation (power supplies, power analyzers, high voltage power supplies, electronic loads, digital oscilloscopes, multimeters) for the experimental study and testing of the power electronic circuits store and analyze the numerical data obtained by the explorations equipments, and to determine the characteristics of a power circuit from testing;
	In accordance with Grila1 and Grila2 RNCIS	N.A.
۲ Cross competences (Grila1, 2 RNCIS)		abiactives (as results from the key competences goined)

7. Discipline objectives (as results from the key competences gained)

and testing of the power electronic circuits.	7.1		Developing the competences regarding the design, simulating and testing of the power electronic circuits.
---	-----	--	--

7.2	Specific objectives	 Assimilation of theoretical knowledge for the design and simulation of electronic circuits using advanced simulation tools Obtaining the needed skills and abilities to implement and test the performance of power electronic circuits.
-----	---------------------	---

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
8.1. 1 2 3 4 5 6 7 8 9	Lecture (syllabus) Introduction in power electronics. The use of power electronics inside an automatic control system. Converters classifications. Performances of power electronic devices on switching mode. Power semiconductor diode (Structure. Symbol. Turn on and turn off the diode. Reverse recovery current. Power diode used in switching inductive loads). Bipolar junction transistor (Structure. Operating principle. Base drive principle. Darlington connection. Emitter drive principle). Power MOS-FET transistor (Structure. Operating principle. Gate drive principle). Silicon controlled rectifier thyristor (Structure. Electrical equivalent schematics. Turning on using gate current pulses and parasitical turning on). Thyristor (Triggering the SCR using phase control). The Gate Turn-Off (GTO) thyristor (Gate drive principles. Cathode drive principles). TRIAC (Structure. Operating principle. Features). Insulated gate bipolar transistor (Structure. Electrical equivalent schematics. Gate drive principle. Over-current and short-circuit current protection). Bidirectional switch. Inverter leg configuration. Boostrap drive principle and gate isolated control) Inverter's leg protection against short-circuit (Introducing a dead time interval in the drive signals. The use of the snubbers on the supply DC link). Half-bridge and full-bridge single phase inverters with full-wave operation mode (Operation principle. Calculus of the frequency's spectrum harmonics. Analysis of the active energy transfer and energy		Use of .ppt presentation, projector, blackboard sat
10 11	recovering modes). Full-bridge single phase inverters with phase displacement control. Free wheeling mode. Three-phase full-bridge inverters in six step operation. Vector model of a three-phase full-wave inverter. Transitions diagram. Selected harmonics elimination Pulse Width Modulation (PWM).	ic conversation	Ĕ
12 13	Sinusoidal PWM. Overmodulation. Space vector PWM. Linear SV-PWM modulation. Frequency converters. Voltage, current and oscillating DC link	heurist	
14	converters. AC choppers. Exam revision and preparing.		
	Applications (lab)	Teaching methods	Notes
1 2 3 4 5 6 7 8 9 10 11	Laboratory description. Labour protection measures. BJT base drive circuits. BJT parallel driving. Power MOS-FET gate drive circuits with galvanic insulation Snubber protection circuits Thyristor. Operating principles. Static characteristics. Simulation of the power MOS-FET gate drives circuits. Thyristor gate drive principle using phase control of the firing angle. TRIAC switching using TCA785 IC. Single-phase full-bridge inverter control using Bootstrap technique Overcurrent and short-circuit protection for IGBT	Didactic and experimental proof, didactic exercise, team work.	Use of laboratory instrumentation, advanced simulating tools, experimental boards, computers, white/magnetic board.
9 10	TRIAC switching using TCA785 IC. Single-phase full-bridge inverter control using Bootstrap technique	Didactic and didactic ex	

14 Final assessment. Recovering the missing labs.		
Bibliography		
 Palaghiţă N., "Electronică de Putere – partea I – Dispozitive semicono Mediamira, Cluj-Napoca, 2002., 202 pag. Palaghiţă N., Petreuş D., Fărcaş C., Electronică de putere partea a II-a, C Editura Mediamira, Cluj-Napoca, 2004, 310 pag., ISBN 973-713-039-1. Bimal K. Bose, Modern Power Electronics and AC Drives, Prentice Hall; 1 pag., ISBN-13: 007-6092010555 	ircuite electronio	ce de putere,
4. Alexa D., Gâtlan L., Ionescu F., Lazăr A., Convertoare de putere cu	circuite rezona	ante, Editura
 Tehnică, Bucureşti, ISBN 973-31-1245-3, 1998. 5. Alexa D., Hrubaru O., Aplicaţii ale convertoarelor statice de putere, Editura 6. Mohan N., Undeland T., M., Robbins W., P., Power Electronics – Converte (New York: Wiley), 1995. 7. Rashid M., Power Electronics: Circuits, devices and Applications, Second 1 1993. 	ers, Applications	and Design,
Teaching materials in digital format		
1. Palaghiță N., Power Electronics, PowerPoint Presentations		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		Two issues of theory from the first and, respectively, the second part of the subjects taught		Oral examination		60%	
Applications		Solving a problem specific to the power electronic circuits		Oral examination		20%	
		Two written and one oral tests for evaluating the knowledge and practical skills and abilities acquired		Ongoing evaluation		20%	
10.4 Minimu	m star	ndard of performance					
Answer corre	Answer correctly at least one subject of theory, exposing issues of theory and applications in a						
technical appr	technical appropriate speech and obtain a minimum of 5 at the laboratory evaluation.						

Date of filling in Cour 09.02.2015 Asso

Course responsible Assoc. Prof. Niculaie Palaghita, PhD Teachers in charge of applications Assoc. Prof. Cristian Farcas, PhD Assistant Ionut Ciocan, PhD

Date of approval in the department 09.02.2015

Head of department Prof. Dorin Petreus, PhD