



# SYLLABUS

### 1. Data about the program of study

| 1.1 | Institution                    | The Technical University of Cluj-Napoca                       |
|-----|--------------------------------|---------------------------------------------------------------|
| 1.2 | Faculty                        | Electronics, Telecommunications and Information<br>Technology |
| 1.3 | Department                     | Applied Electronics                                           |
| 1.4 | Field of study                 | Electronics and Telecommunications Engineering                |
| 1.5 | Cycle of study                 | Bachelor of Science                                           |
| 1.6 | Program of study/Qualification | Telecommunications Technologies and Systems/ Engineer         |
| 1.7 | Form of education              | Full time                                                     |
| 1.8 | Subject code                   | TST-E108.00                                                   |

### 2. Data about the subject

| 2.1 | Subject name                       |  |     |                                             | Data                                           | Data Acquisition Systems |            |        |     |                  |         |
|-----|------------------------------------|--|-----|---------------------------------------------|------------------------------------------------|--------------------------|------------|--------|-----|------------------|---------|
| 2.2 | Subject area                       |  |     | Elec                                        | Electronics and Telecommunications Engineering |                          |            |        |     |                  |         |
| 2.3 | Course responsible/lecturer        |  |     | Senior lecturer Liviu Marin Viman, PhD eng. |                                                |                          |            |        |     |                  |         |
| 2.4 | Teachers in charge of applications |  |     |                                             | Senior lecturer Liviu Marin Viman, PhD eng.    |                          |            |        |     |                  |         |
|     |                                    |  |     |                                             | Lecturer Septimiu Pop, PhD eng.                |                          |            |        |     |                  |         |
|     |                                    |  |     |                                             | Teaching assist. Mihai Daraban, PhD eng.       |                          |            |        |     |                  |         |
| 2.5 | Year of study                      |  | 2.6 | Semester                                    | 2                                              | 2.7                      | Assessment | Verif. | 2.8 | Subject category | DS/ FAC |

### 3. Estimated total time

| Year<br>/ | Subject name             | No.<br>of | Course       | Ар | plic         | ations | Course | Αŗ | oplica | ations | Indiv.<br>study | LAL | edits |
|-----------|--------------------------|-----------|--------------|----|--------------|--------|--------|----|--------|--------|-----------------|-----|-------|
| Sem       |                          | wee       | [hours/week] |    | [hours/sem.] |        |        |    | 6      | Cre    |                 |     |       |
|           |                          | ks        |              | S  | L            | Р      |        | S  | L      | Р      |                 |     | 0     |
| /         | Data Acquisition Systems | 14        | 2            |    | 1            | 2      | 28     |    | 14     | 14     | 22              | 78  | 3     |

| 3.1                                                                              | Number of hours per week       | 4  | 3.2 | of which, course | 2  | 3.3 | applications | 2  |
|----------------------------------------------------------------------------------|--------------------------------|----|-----|------------------|----|-----|--------------|----|
| 3.4                                                                              | Total hours in the curriculum  | 56 | 3.5 | of which, course | 28 | 3.6 | applications | 28 |
| Indiv                                                                            | Individual study               |    |     |                  |    |     |              |    |
| Manual, lecture material and notes, bibliography                                 |                                |    |     |                  |    |     |              | 14 |
| Supplementary study in the library, online and in the field                      |                                |    |     |                  |    |     | -            |    |
| Preparation for seminars/laboratory works, homework, reports, portfolios, essays |                                |    |     |                  |    |     | 4            |    |
| Tutoring                                                                         |                                |    |     |                  |    |     | 2            |    |
| Exar                                                                             | ns and tests                   |    |     |                  |    |     |              | 2  |
| Other activities                                                                 |                                |    |     |                  |    |     | -            |    |
| 3.7                                                                              | Total hours of individual stud | dy | 22  |                  |    |     |              |    |
| 3.8                                                                              | Total hours per semester       |    | 78  |                  |    |     |              |    |

3.9 Number of credit points 3

#### 4. Pre-requisites (where appropriate)

| 4.1 | Curriculum |                                                           |
|-----|------------|-----------------------------------------------------------|
| 4.2 | Competence | Electronic Devices and Circuits, Data Acquisition Systems |
|     |            | Fundamentals, Microcontrollers, Sensors and Transducers   |

### 5. Requirements (where appropriate)

| 5.1 | For the course       | Amphitheatre, Cluj-Napoca |
|-----|----------------------|---------------------------|
| 5.2 | For the applications | Laboratory, Cluj-Napoca   |





## 6. Specific competences

|                          | Theoretical<br>knowledge (what<br>the student must<br>know):               | <ul> <li>The design of the structure and the components of a data acquisition system, according to the required application.</li> <li>To deeply understand the basics of Data Acquisition Systems / Industrial Systems, in order to integrate them correctly and efficiently into Data logger systems.</li> <li>To understand the errors and limits sources and apply methods for reducing the unwanted effects</li> </ul>                                                                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ompetences               | Acquired skills (what the student is able to do):                          | <ul> <li>After completing the discipline, the students will be able to:</li> <li>define a data acquisition system;</li> <li>develop required specifications depending on the application;</li> <li>create a structure of a data acquisition system;</li> <li>develop specifications for the functional blocks;</li> <li>design the functional blocks of data acquisition system;</li> <li>realized the hardware test and the calibration of the system;</li> <li>use the data acquisition system;</li> <li>functional analyzing and performances of data acquisition system;</li> <li>defined/created the soft applications of of data acquisition system.</li> </ul> |
| Professional competences | Acquired abilities: (what type of equipment the student is able to handle) | After completing the discipline, the students will be able to:<br>- use LabVIEW, LabVIEW FPGA;<br>- use FPGA circuits and systems where are included.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | In accordance with<br>Grila1 and Grila2<br>RNCIS                           | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | competences<br>(Grila1 and<br>Grila2 RNCIS)                                | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### 7. Discipline objectives (as results from the key competences gained)

| 7.1 | General objectives  | Developing skills regarding analysis and design of the data acquisition systems                                                                                                                                                                                                         |
|-----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 | Specific objectives | <ol> <li>Assimilation of theoretical knowledge on the functioning<br/>and performances of the support circuits for DAC and ADC.</li> <li>Obtaining the necessary skills to: develop, designing (and<br/>computer aided design) and analyze the data acquisition<br/>systems.</li> </ol> |





8. Contents

| 8.1 | . Lecture (syllabus)                                                                                                                     | Teaching methods                                                                                                    | Notes                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1   | Defining a Data Acquisition System. Specific Parameters.                                                                                 | mounodo                                                                                                             |                                                                            |
| 2   | Adapting the Data Acquisition System to the required application.                                                                        | ۔<br>فر                                                                                                             |                                                                            |
| 3   | Data Acquisition System Structure. Informational path.                                                                                   | tior                                                                                                                | to                                                                         |
| 4   | Intermediate data processing.                                                                                                            | ration –                                                                                                            | jec                                                                        |
| 5   | Specifying the structural blocks.                                                                                                        | Presentation,<br>heuristic conversation,<br>blification, teaching exe<br>study, formative evalu                     | oro                                                                        |
| 6   | Performance / structure / price ratio.                                                                                                   | e e                                                                                                                 | ů.                                                                         |
| 7   | Conditioning stages design.                                                                                                              | tive of the                                                                                                         | tio                                                                        |
| 8   | ADC design.                                                                                                                              | Presentation,<br>stic conversa<br>ation, teaching<br>y, formative e                                                 | nta                                                                        |
| 9   | Embedded system design.                                                                                                                  |                                                                                                                     | se                                                                         |
| 10  | DAC and output amplifiers design.                                                                                                        | y, <sup>1</sup> sti                                                                                                 | ore                                                                        |
| 11  | Communication paths. Distributed Data Acquisition System.                                                                                | ind files                                                                                                           | d t                                                                        |
| 12  | Block and system calibration. Functional and performance analyzis.                                                                       | Presentation,<br>heuristic conversation,<br>exemplification, teaching exercise,<br>case study, formative evaluation | Use of .ppt presentation, projector,<br>blackboard                         |
| 13  | Data Acquisition System software component.                                                                                              |                                                                                                                     | acha                                                                       |
| 14  | Recapitulation. Preparation for the final exam.                                                                                          |                                                                                                                     | ň ä                                                                        |
|     | . Applications (project)                                                                                                                 | Teaching                                                                                                            | Notes                                                                      |
| 0.2 |                                                                                                                                          | methods                                                                                                             |                                                                            |
| 1   | Defining a Data Acquisition System. Specific Parameters.                                                                                 |                                                                                                                     |                                                                            |
| 2   | Data Acquisition System Structure. Informational path.                                                                                   | tio                                                                                                                 |                                                                            |
| 3   | Conditioning stages design.                                                                                                              | rai, r                                                                                                              |                                                                            |
| 4   | Variable gain amplifiers ADC design.                                                                                                     | val <sup>n</sup> ,                                                                                                  |                                                                            |
| 5   | Embedded system design.                                                                                                                  | e d<br>d<br>d                                                                                                       |                                                                            |
| 6   | Processing and displaying data.                                                                                                          | tive plife                                                                                                          |                                                                            |
| 7   | Project presentation.                                                                                                                    | Presentation,<br>exemplification,<br>case study,<br>formative evaluation                                            |                                                                            |
| 8.3 | . Applications (lab.)                                                                                                                    | Teaching methods                                                                                                    | Notes                                                                      |
| 1   | General presentation of LabVIEW FPGA and SPARTAN-3E<br>Starter Kit board                                                                 | proof,<br>cise,                                                                                                     | Use of laboratory<br>instrumentation,<br>experimental<br>boards, computers |
| 2   | LabVIEW FPGA project implementation .                                                                                                    | cise                                                                                                                | atio<br>put                                                                |
| 3   | Events counter for the rotary encoder.                                                                                                   | Didactic and<br>experimental pro<br>didactic exercise,<br>team work                                                 | Jse of laborator<br>instrumentation,<br>experimental<br>oards, computer    |
| 4   | T1. Digital thermometer. (test)                                                                                                          | Didactic and<br>experimenta<br>didactic exer<br>team work                                                           | me<br>arir<br>srir                                                         |
| 5   | T2. Signal generator. (test)                                                                                                             | ≦ tic tic                                                                                                           | ds tr of                                                                   |
| 6   | T3. LCD controller. (test)                                                                                                               | da<br>da<br>am                                                                                                      | lse<br>ins<br>e                                                            |
| 7   | Lab recovery and finalization of laboratory activity                                                                                     | Ęġġ                                                                                                                 | ه د                                                                        |
| Rib | liography                                                                                                                                |                                                                                                                     | 1                                                                          |
| 1.  | M. Dăbâcan – Data Acquisition Systems Fundamentals, Casa Cărții<br>566-5, 295 pagini, Cluj-Napoca, 2004.                                 | de Ştiinţă, ISBN 9                                                                                                  | 73-686-                                                                    |
|     | Liviu Viman, Septimiu Pop – Data acquisition systems – Applications<br>FPGA and Spartan-3E Starter Kit Board, Cluj-Napoca, Romania: U.T  |                                                                                                                     |                                                                            |
|     | <ul> <li>– under printing.</li> <li>Jack Ganssle et al. – Embedded Hardware: Know It All, Newnes, ISE</li> </ul>                         | NI- 078 0 7506 0                                                                                                    | 581_0 2000                                                                 |
|     | Robert Oshana, Mark Kraeling – Software Engineering for Embedder                                                                         |                                                                                                                     |                                                                            |
|     | Practical Techniques and Applications, Elsevier, ISBN: 978-0-12-415                                                                      |                                                                                                                     | 003                                                                        |
|     | -line references                                                                                                                         | , 2010.                                                                                                             |                                                                            |
| 1.  | L. Viman, S. Pop - "Data Acquisition Systems - Lab Themes ", UTCN                                                                        |                                                                                                                     | ۰.                                                                         |
|     | http://www.ael.utcluj.ro/ORGANIZARE/curs_SAD.HTML, 60 pagini,                                                                            | - ·                                                                                                                 |                                                                            |
|     | 9. Bridging course contents with the expectations of the community, professional associations and employers                              |                                                                                                                     | s of the                                                                   |
|     |                                                                                                                                          |                                                                                                                     |                                                                            |
|     | npetences acquired will be used in the following COR occupations (E<br>ecommunications Engineer; Electronics Design Engineer; System and |                                                                                                                     |                                                                            |

Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).





#### 10. Evaluations

| Activity type | 10.1                                                                          | Assessment criteria             | 10.2 | Assessment         | 10.3 | Weight in the |  |  |  |
|---------------|-------------------------------------------------------------------------------|---------------------------------|------|--------------------|------|---------------|--|--|--|
|               |                                                                               |                                 |      | methods            |      | final grade   |  |  |  |
| Course        |                                                                               | The level of acquired           |      | Summative          |      | 40%           |  |  |  |
|               |                                                                               | theoretical knowledge and       |      | evaluation written |      |               |  |  |  |
|               |                                                                               | practical skills                |      | exam (E)           |      |               |  |  |  |
| Applications  |                                                                               | The level of acquired abilities |      | practical lab test |      | 30%           |  |  |  |
|               |                                                                               |                                 |      | (T1, T2, T3)       |      |               |  |  |  |
| Project       |                                                                               | The level of acquired abilities |      | Р                  |      | 30%           |  |  |  |
| 10.4 Minimum  | stand                                                                         | ard of performance              |      |                    |      |               |  |  |  |
| L≥5 (L=(T1+T  | L≥5 (L=(T1+T2+T3)/3) and P≥5 and E≥4 and NF≥4.5 where NF=0.3*L +0.3*P+ 0.4*E. |                                 |      |                    |      |               |  |  |  |

Date of filling in<br/>26.01.2015Course responsible<br/>Assist. Prof. Liviu Viman, PhD

Teachers in charge of applications Assist. Prof. Septimiu Pop, PhD

Date of approval in the department 26.01.2015

Head of department Prof. Dorin Petreus, PhD