

SYLLABUS

1. Data about the program of study

		<u> </u>
1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
		Technology
1.3	Department	Applied Electronics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/
		Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E109.00

2. Data about the subject

2.1	Subject name				Sys	Systems with Microcontrollers					
2.2	2 Subject area				Eied	Eiectronics Engineering and Telecommunications					
2.3	3 Course responsible/lecturer				Pro	f.dr.ing. Dori	n Petreu	s			
2.4	Teachers in charge of applications					Assistant Patarau Toma, PhD eng.					
					Assistant Etz Radu, PhD eng.						
2.5	Year of study	III	2.6	Semester	2	2.7	Assessment	Exam	2.8	Subject category	DID/
											FAC

3. Estimated total time

Year/ Sem	Subject name	No. Of weeks	Course	Ар	olica	ations	Course	rse Applications		Indiv. study	TAL	dits	
			[hou	[hours/week]		[hours/semester]			.0 T	Cre			
				S	L	Ρ		S	L	Ρ			
111/11	Systems with Microcontrollers	14	2		2	1	28		28	14	60	130	5

3.1	Number of hours per week	5	3.2	of whic	ch, course	2	3.3	Applications	3
3.4	Total hours in the	70	3.5	of whic	ch, course	28	3.6	Applications	42
	curriculum								
Indiv	vidual study								Hours
Man	ual, lecture material and note	es, bib	oliograp	hy					26
Sup	plementary study in the librar	y, onli	ine and	l in the	ield				4
Prep	paration for seminars/laborate	ory wo	orks, ho	meworl	k, reports, po	ortofoli	os, es	says	26
Tuto	ring								2
Exa	ms and tests								2
Other activities							-		
3.7	Total hours of individual	study	,	60					

-	· · · · · · · · · · · · · · · · · · ·	
3.8	Total hours per semester	134
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Knowledge in digital electronics, general programming

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca

5.2	For the applications	Laboratory, Cluj-Napoca

6 Specific competences

Professional competences	Theoretical knowledge(what the student must know):	
	Acquired skills (what the student is able to do):	 After completing the discipline, the students will be able to: Know the structures of different types of microcontrollers; Understand how a microcontroller can be programmed; Appreciate the advantages of using a microcontroller; Design a specific application.
	Acquired abilities: (what type of equipment the student is able to handle)	 After completing the discipline, the students will be able to: use the IDE like Keil-uVision ; program in assembly and C language; measure the signals supplied by a microcontroller; use the specific tools of debugging.
	In accordance with Grila1 and Grila2 RNCIS	N.A.
	Cross competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the use
		analysis and design of systems with microcontrollers.
7.2	Specific objectives	1. Recognizing and understanding basic concepts
		specific to systems with microcontrollers.
		2.Developing skills and ablilities regarding the
		theoretical knowledges specific to systems with
		microcontrollers.
		3. Developing skills and abilities fot the use, analysis
		and (re)design of systems with microcontrollers.

8. Contents

8.1.	Lecture (syllabus)	Teaching	Notes
		methods	
1	Introduction. Microprocessors and Microcontrollers		P
2	8051 Microcontroller Hardware • General description • Internal	ć	00
	memory • Stack;	tio	к К
3	Input/ Output Pins, Ports, and Circuits • Description • Timers and	nta	ola
4	Counters • Functioning modes;	ese est	r, h
4	serial port • Serial port interrupts • Operation modes of the serial	pre	ecto
5	Interrute • Description • Types of interrupts • Interrupts control •	E	oje
5	Interrupts validation • Interrupts priority:	ple	br
6	Serial interface • RS232 standard • Description and semnification •	brc	u
Ŭ	Communication lines:	se,	tati
7	Industrial communications interfaces. • RS485. • RS422•	atio	en
	Communications protocols.	ficat	res
8	Serial communications standards I2C, SPI • Description Circuits •	sen ildr ig e	тр
	Communications protocols •data transfer writing/reading • Master	res ten	dd.
	emitter/receiver • Slave	ас с Р	đ
9	Converters A/D, D/A • Generators PWM;	te où,	e e
10	Programming uC8051• Assembler •Assembly directives •	ati	ñ
	Programming microcontrollers in C language;	ers	
11	uC8051 instruction set • Addressing modes • Data transfer		
40	Instructions;	0 0	
12	Logical Instructions • Logical operations at byte level • Logical	stic	
	Decrementing • Summation extract multiply divide:	nri	
13	Jump and call opcodes	he he	
1/	Real -world interfacing · I CD_ADC_DAC • Recapitulation		
82	Applications (laboratory)	Teaching	Notes
0.2.		methods	10003
1	Introduction. Lab instrumentation;		
2	RAM memory testing • Soft delay subroutine		
3	Hard delay subroutine • Working with data tables:	<u>U</u>	
4	Serial port • Serial interface • Working principles • RS232	acti	
-	communication protocols:	did	ds, -
5	Keyboard types used in microcontroller systems • Subroutines	j,	ion bar
-	used to command the keyboards;	loc	itat bc
6	Displays used in microcontroller systems • Subroutines used to		ner tion tic t
	command the displays;	nta	nat net
7	I ² C Interface	e ~	val ag
8	LM75 temperature sensor interfacing	or l	×α , π e ⊨
9	Process supervising system;	dxe v v	anc anc hite
10	Extended interrupts system;	id € ∋an	ore tal ; vI
11	External signals processing	, té	lab ent ∍rs,
12	DC motor control	ctic	of I ute
13	Double ramp converter assisted by microcontroller	dac erc	bei mp
14	Lab recovery and finalization of laboratory activity	ĕ Ō	S ⊛ C

Bibliografy:

1. Petreus, D. s.a , Aplicatii cu microcontrolere din familia 8051, Editura Mediamira, Cluj-Napoca, ISBN 973-713-014-7 , 2005; 162 pag.

2. Petreus, D., Microcontrollers System, course slides

3. Ayala J. Keneth, The 8051 Microcontroller –Architecture, Programming, and Applications. West Publishing Company, , 1991, ISBN 0-314-77278-2, 241 pag.

2. Mazidi, M.A, Mazidi J.G. The 8051 Microcontroller and embedded systems, Prentice Hall, 2000, ISBN 0-13-861022.

On-line references

1. www.intel.com, www.philips.com, www.atmel.com;

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the			
				methods		final grade			
Course		The level of acquired theoretical knowledge and practical skills		- Summative evaluation written exam (theory and problems) problem solving (70%) and theoretical subjects (30%)		Exam (E: 010 points); Homework (H: 010 points);			
Application s		The level of acquired abilities		- Continuous formative evaluation - practical lab test		Laboratory (L: 010 points);			
10.4 Minim	10.4 Minimum standard of performance								
	M = 0.6E + 0.2L + 0.2H Pass if E>4 and L>4 and M>4.5								

Date of filling in 1.10.2014

Course responsible Prof. Petreus Dorin, PhD eng. Teachers in charge of applications Assistant Patarau Toma, PhD eng. Assistant Etz Radu, PhD eng.

Date of approval in the department 1.10.2014

Head of department Prof. Petreus Dorin, PhD eng.