

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Electronics, Telecommunications and Information				
	Tacuty	Technology				
1.3	Department	Bases of Electronics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/				
		Engineer, Applied Electronics/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	TST-E21.00, EA-E21.00				

2. Data about the subject

2.1	1 Subject name			Digital Integrated Circuits							
2.2	2.2 Subject area			Electronic devices and circuits							
2.3	3 Course responsible/lecturer			Assoc. Prof Mihaela Cîrlugea, Ph.D							
2.4	2.4 Teachers in charge of applications				Assoc. Prof Mihaela Cîrlugea, Ph.D						
2.5	Year of study	Π	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DID/DOB

3. Estimated total time

Year/	Subject name	No.	Course	App	licatio	ons	Course	Арр	licati	ons	Indiv.		
Sem.		of									study	-AL	dits
		weeks	[hours/week]			[hours/sem.]				<u>-</u>	Cree		
				S	L	Ρ		S	L	Ρ			0
II / 1	Digital Integrated Circuits	14	2	1	1		28	14	14		94	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2		
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28		
Indivi	dual study							Hours		
Manual, lecture material and notes, bibliography										
Supplementary study in the library, online and in the field										
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios,	essays		42		
Tutor	ing							5		
Exams and tests										
Other activities										
3.7	7 Total hours of individual study 94									

- 3.8 Total hours per semester 150 3.9 5
- Number of credit points
 - 4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Bases of numeration, elements of logic and binary algebra
		Bases of programming

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Laboratory, Cluj-Napoca

6. Specific competences

		To distinguish digital from analog circuits, Synchronous and asynchronous circuits,
	dge st	Combinational and sequential digital components
	wle mu	Logic algebra notions. Binary codes and base 2 arithmetics. Combinational circuits
	kno lent	applications. Decoders, multiplexers, demultiplexers. Internal structures and hip-hop
	al k stuc	circuits functioning description. Analysis and synthesis of synchronous sequential logic
	etic he :	integrated counters. Applications with synchronous integrated counters. Latches and serial
	eor at t w):	shift operations. Sequential automata and communication protocols implemented with
	The kno	sequential synchronous circuits. Asynchronous sequential automata.
	۵	After completing the discipline, the students will be able to:
	÷.	- develop abilities to process logical expressions and logic function description
	vhat):	- to do the transition from the algebraic logic function form to the circuit scheme and vice-
	v) s odo	versa
	kills ole t	- to analyze combinational and sequential circuits using truth tables and signal diagrams
	d s s ab	- to use sequential and combinational logic circuits containing logic gates, multiplexers,
ces	uire ent i	demultiplexers, PLA, decoders, flip-flops, counters, registers
ten	cdr	- to design fundamental combinational and sequential digital systems
compe	st A	- to analyze and describe fundamental digital systems using the VHDL language
	it type of able to	After completing the discipline, the students will be able to:
al o		- use the lab instrumentation (power supply, oscilloscope, function generator, multimeter)
sion		for the experimental study of electronic circuits
ess	wha it is	- use the experimental boards
rof	s: (ider	- connect the lab institumentation with the experimental boards, in order to experimentally study electronic circuits
ш	litie : stu	- use the computer to the numerical data obtained through the explorations
	abi	 store and analyze the numerical data obtained through the explorationseasy compute and
	red)	handle with numbers in 2 and 16 base
	quir ndiu ndle	 sinthesise logic problems of various complexity
	Acredution	- design, implement and simulate digital circuits on computer and on digital board
	a1 and	C1. To use the fundamental elements regarding electronic devices, circuits, systems,
		instrumentation and technology
	Grils IS	C2. To apply basic methods for signal acquisition and processing
	LC O	C3. To apply knowledge, concepts and basic methods regarding computing systems
	ΣΩ Ω	C4. To design implement and operate data voice, video and multimedia services, based
	ila2	on the understanding and application of fundamental concents from the field of
	Grđa	communications and information transmission
	000	C5. To select install, configure and exploit fixed and mobile telecommunications
	na	equipment. To equip a site with common telecommunications networks.
	_	N.A.
c	uila)	
Q G G		
ros	ACI	
ΟĞ	g 1a R	
č	Gri	
	\smile	

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the use, analysis and					
		(re)design of fundamental electronic circuits.					
7.2	Specific objectives	 Recognizing and understanding basic concepts specific to fundamental electronic circuits. Developing skills and abilities necessary for the use of fundamental digital components and circuits. Developing skills and abilities for the analysis and (re)design of fundamental electronic circuits. 					

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Introduction to the Binary Logic, Numeration systems		
2	Boolean Algebra, Operations, Properties	y,	arc
3	Combinational Logic Circuits Eundamental logic gates Analysis and	op	pod
Ŭ	synthesis of circuits containing gates. Logic functions minimization	pr e st	ack
4	Function Minimization. Karnaugh Maps. Combinational circuit	on	pla
	applications: summer, comparer, coder, parity decoder, etc	cati n c	or,
5	Multiplexers. Binary Trees	, lific ise ttio	ect
6	Demultiplexers. Decoders	ion erc Ilua	roj
7	Memories and Programmable Logic Arrays Basics	itati exe eva	ј, р
8	Sequential Logic Circuits. RS, D, JK, T flip-flops. Internal structures	sen , e ing /e (tion
_	and functioning. Analysis and synthesis of sequential synchronous	rres Ichi ativ	nta
	circuits containing flip-flops	Р Faa rm	se
9	Synchronous and Asynchronous Counters with Flip-Flops	fo fo	pre
10	Sequential Synchronous Automata with Flip-Flops	son	pt
11	Synchronous Counters. Applications with Counters	ic c enta	<u>d</u>
12	Circuit applications with registers. Johnson counters. Serial-parallel	ese	e of
	interfaces, LIFO and FIFO memories	br	Jse
13	Latches and serial registers	Ч	ſ
14	Sequential Synchronous Automata with Counters and Registers		
8.2.	Applications	Teaching methods	Notes
Lab	oratory		
1	Labour protection. Combinational logic circuits implemented with SSI		
	logic modules	tic	
2	Applications with Multiplexers	dac	s, J
3	Applications with Demultiplexers and Decoders	dic	atic
4	Applications with Flip-Flops (counters, frequency dividers, signal generators)	of,	ent: d
5	Sequential Synchronous Automata with Flip-Flops	pro /orl	om oar
6	Applications with Synchronous Counters (counters, frequency dividers, signal	n w	str s, c c b
	generators)	ent	ins irds eti
7	Sequential Synchronous Automata with Counters	e, te	yrc ooa ign
Sem	inary	pel	al t ma
1	Fundamental logic functions, minimization, logic operations	erc	bo ent: ite/
2	Analysis and synthesis of circuits containing gates.	ex	wh fa
3	Multiplexers and their applications	а С	en of
4	Decoders and demultiplexers	acti	lse ext
5	Analysis and synthesis of circuits with flip-flops (D, T, RS, JK).	Dide	
0 7	Sequential synchronous automata with filp-flops and CLC	Ц	
/	Analysis and synthesis of sequential automata with counters		

Bibliography

- M. Cîrlugea: DIC Course (in progress)
 S. Hintea, Lelia Feştilă, Mihaela Cîrlugea Circuite Integrate Digitale.UT Press, 2005.
 Gabor Csipkes, Doris Csipkes, Sorin Hintea, Mihaela Cîrlugea "Circuite integrate digitale: culegere de probleme", editura UT Press 2011
- S. Hintea Proiectarea circuitelor digitale VLSI, Ed. Casa Cărții de Știință, 1997. 4.

- 5. Lelia Feştilă Electronică digitală- Circuite logice combinaționale, Lito. UTC-N, 1994.
- 6. Lelia Feștilă Electronică digitală Circuite logice secvențiale, Lito, UTC-N, 1994.
- S. Hintea, Lelia Feştilă, Mihaela Cîrlugea Circuite Integrate Digitale. Culegere de probleme, Ed. Casa Cărții de Ştiință, 1999.
- 8. Lelia Feştilă, Sorin Hintea Circuite integrate digitale. Îndrumător de laborator, Ed. Lito UTC-N, 1991
- Dan Nicula. Electronica digitala. Carte de invatatura. Editura Universităţii TRANSILVANIA din Braşov, 2012
- 10. A.E.A. Almaini. Electronic Logic Systems, Ed. Prentice Hall, 1994.
- 11. John F. Wakerly. Circuite Digitale, Editura Teora, Bucuresti, 2002.
- 12. Rabaey J.M., Chandrakasan A., Nikolic B. Digital Integrated Circuits. A design perspective. Prentice Hall, 2003.
- Weste, N.H.E., Eshraghian, K. Principles of CMOS VLSI Design. A System perspective. Addison-Wesley Publishing Company, 1993

Electronic material:

- 15. Hintea, S. Pagina web a disciplinei de Circuite integrate digitale (prezentari curs, lucrari de laborator, probleme propuse, subiecte de examen), <u>http://www.bel.utcluj.ro/ci/rom/cid/index.htm</u>
- 16. Marcovitz: Introduction to Logic Design, McGraw Hill, New York, 2005
- 17. Morris Mano, Michael Ciletti: Digital Design, Prentice Hall, SUA, 2007
 - 1. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

2. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the			
						final grade			
Course		The level of acquired theoretical knowledge and practical skills		- Summative evaluation written exam (theory and problems)		- E, max 10 pts. 80%			
Applications		The level of acquired abilities		 Continuous formative evaluation practical lab test 		- L, max. 10 pts. 20%			
10.4 Minimum standard of performance									
	L≥5 and E≥4 and 0,2L+0,8E≥4.5								

Date of filling in 19.01.2015

Course responsible Assoc. Prof Mihaela Cîrlugea, Ph.D Teachers in charge of applications Assoc. Prof Mihaela Cîrlugea, Ph.D

Date of approval in the department 19.01.2015

Head of department Prof. Sorin Hintea, PhD