

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Electronics, Telecommunications and Information				
	Tacuty	Technology				
1.3	Department	Bases of Electronics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/				
		Engineer, Applied Electronics/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	TST-E22.00, EA-E22.00				

2. Data about the subject

2.1	Subject name	Fundamental electronic circuits							
2.2	Subject area	Electronic devices and circuits							
2.3	Course responsible/lecturer	Prof. Gabriel Oltean, PhD							
2.4	2.4 Teachers in charge of applications Assist. Prof. Emilia Sipos, PhD								
2.5	Year of study II 2.6 Semester 1	2.7 Assessment Exam 2.8 Subject category DID/I	DOB						

3. Estimated total time

Year	Subject name	No.	Course	App	licatio	ons	Course	App	olicati	ons	Indiv.		
/		of									study	-AL	dits
Sem.		weeks	[hou	urs/w	eek]		[hours/sem.]		n.]		10	Cre	
				S	L	Ρ		S	L	Ρ			0
II / 1	Fundamental electronic circuits	14	2		2		28		28		74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28	
Individual study Hou									
Manu	al, lecture material and notes, b	ibliog	raphy					40	
Supp	lementary study in the library, o	nline a	and in th	e field				-	
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios	essays	6	28	
Tutor	ing							3	
Exams and tests									
Other activities (
37	Total hours of individual study		74						

3.7	I otal hours of individual study	74	
3.8	Total hours per semester	130	
3.9	Number of credit points	5	

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Relations and theorems for electric circuits, frequency response
		representation; operating principles for electronic devices:
		diode, operational amplifier, MOSFET and BJT transistors; use
		of electronic devices in electronic circuits; analysis methods for
		electronic circuits; voltage transfer characteristics; transfer
		function

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Laboratory, Cluj-Napoca

6. Specific competences

Professional competences	Theoretical knowledge (what the student must know):	Transistor biasing circuits for transistor amplifiers;Small signal models for transistors and amplifiers with transistors (MOS, BJT); Feedback circuits structure, type of feedback, the fundamental equation of the negative feedback; Configuration, operating principle and analysis and (re)design methods for fundamental electronic circuits: amplifiers with one transistor, current sources and mirrors, linear voltage regulators, sinusoidal and non-sinusoidal oscillators, power amplifiers, other circuits with operational amplifiers.
	Acquired skills (what the student is able to do):	 After completing the discipline, the students will be able to: analytically compute the quiescent point of transistors; determine the small signal parameters of transistors; analyze and determine the performance of fundamental electronic circuits; describe the operation of fundamental electronic circuits using analytical equations, transfer characteristics and waveforms in different points of the circuits; (re)design fundamental electronic circuits; use dedicated integrated circuits for various applications; analyze and experimentally determine the performance of fundamental electronic circuits.
	Acquired abilities: (what type of equipment the student is able to handle)	 After completing the discipline, the students will be able to: use the lab instrumentation (power supply, oscilloscope, function generator, multimeter) for the experimental study of electronic circuits use the experimental boards connect the lab instrumentation with the experimental boards, in order to experimentally study electronic circuits use the computer to the numerical data obtained through the explorations store and analyze the numerical data obtained through the explorations
	In accordance with Grila1 and Grila2 RNCIS	 C1. To use the fundamental elements regarding electronic devices, circuits, systems, instrumentation and technology C2. To apply basic methods for signal acquisition and processing C4. To design, implement and operate data, voice, video and multimedia services, based on the understanding and application of fundamental concepts from the field of communications and information transmission. C5. To select, install, configure and exploit fixed and mobile telecommunications equipment. To equip a site with common telecommunications networks.
Cross	competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the use, analysis and					
		(re)design of fundamental electronic circuits.					
7.2	Specific objectives	 Recognizing and understanding basic concepts specific to fundamental electronic circuits. Developing skills and abilities necessary for the use of fundamental electronic circuits. Developing skills and abilities for the analysis and (re)design of fundamental electronic circuits. 					

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Course description. Biasing circuits for transistors in the active region: the need for biasing, biasing circuits, quiescent point evaluation.	dy,	
2	Parameters and small signal models of transistors; connections of basic amplifiers with one transistor.	e stu	
3	Basic amplifiers with one transistor: small signal equivalent circuits, performance evaluation.	, cas	
4	Frequency response of basic amplifiers with one transistor. CS and CE connections. Current sources and current mirrors with MOSFET and BJT.	exercise	
5	Feedback circuits. Positive feedback and negative feedback. Equations of the ideal feedback. Feedback topologies. Analysis of the negative feedback amplifier. Negative feedback effects on amplifiers.	eaching	kboard
6	DC voltage regulators. Parametric regulators. Linear voltage regulators with op amp. Increasing the output current. Over - current and short - circuit protection. Output characteristic.	tation, te	or, black
7	Integrated voltage regulators. The 723 voltage regulator. Three – terminal fixed regulator. Switching voltage regulators. Step – down and step –down/step – up converters.	ation, presen valuatio	, project
8	Sinusoidal oscillators. Oscillation criterion. RC oscillators. OpAmp and Wien bridge oscillators. Automatic control of the amplitude. OpAmp and RC ladder network oscillator.	Present problem native e	entation
9	LC oscillators. Nonsinusoidal oscillators. Astable multivibrators. Astable multivibrator with one OpAmp, astable multivibrator with an integrator and a comparator with OpAmp. Clock generator. LM555 timer.	ication, forr	opt pres
10	Power amplifiers. Amplifier classes. Class A amplifiers. Operating principle, VTC, waveforms, powers, efficiency.	exemplif	lse of .
11	Class B amplifiers. Operating principle, VTC, crossover distortions, waveforms, powers, efficiency. Class AB amplifiers. Biasing using diodes. Biasing using VBE multiplier. Overcurrent protection. Use of compound transistors with higher current gain.	versation, e	
12	Class D amplifiers. Operating principle. PWM generator. Power stage. Low – pass filter.	con	
13	OpAmp applications: OpAmp amplifiers operated from a single power supply; integrator and differentiator – active filters; current sources using op - amp and T; voltage domain conversion circuits; precision rectifier.	heuristic	
14	Recapitulation. Preparation for the final exam.		

8.2.	Applications (lab)	Teaching methods	Notes
1	Introduction. Labour protection		<u>,</u>
2	Collecting experimental data using the computer	, of,	ion Irs,
3	Transistor amplifiers		ute
4	Single-stage BJT amplifiers	s al	npi
5	Negative feedback effects on amplifiers	ant	
6	LM7805 voltage regulator	te	str s, e ic b
7	DC – DC converter	se,	v in ard
8	Sinusoidal oscillator	exp	agr
9	Function generator	e de	al I /u
10	Multivibrator circuits using the 555 timer	an	ent ite
11	Class B amplifiers	acti	kh la
12	Rail – to – rail op-amp amplifier	lida	Der
13	Laboratory test	D	exp
14	Lab recovery and finalization of laboratory activity		• د

Bibliography

- 1. Oltean, G., Circuite electronice, UT Pres, Cluj-Napoca, 2007, ISBN 978-973-662-300-4, 203 pag
- 2. Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, ISBN 973-662-220-7, 2006; 317 pag.
- Miron,C., Oltean, G., Gordan, Mihaela, Dispozitive şi circuite electronice, Culegere de probleme, Editura Casa Cărții de Știință, Cluj-Napoca, 1999
- Şipoş, Emilia, Oltean, G., Miron, C., Ivanciu, Laura, Gordan, Mihaela, Fundamental Electronic Circuits: Laboratory Manual, Cluj-Napoca, U.T. Press, 2009

On-line references

- Oltean, G. Fundamental electronic circuits (course slides, laboratories, problem examples, exam subjects), <u>http://www.bel.utcluj.ro/dce/didactic/fec.htm</u>
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the			
						final grade			
Course		The level of acquired		- 3 formative evaluation		- T, max 10 pts.			
		theoretical knowledge and		tests (problem solving)		20%			
		practical skills		- Summative evaluation					
				written exam (theory		- E, max 10 pts.			
				and problems)		60%			
Applications		The level of acquired abilities		- Continuous formative					
				evaluation		- L, max. 10 pts.			
				 practical lab test 		20%			
10.4 Minimu	um sta	andard of performance							
	L≥5 and E≥4 and 0,6E+0,2L+0,2T≥4.5								
Date of filling	Date of filling in Course responsible Teachers in charge of applications								
19.01.2015		Prof. Gabriel Oltean, PhD		Assist. Prof. Emilia Sipos, PhD					

Date of approval in the department 19.01.2015

Head of department Prof. Sorin Hintea, PhD