SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Mathematics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/				
	Program of study/Qualification	Engineer, Applied Electronics/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	TST-E23.00, EA-E23.00				

2. Data about the subject

2.1	Subject name					Discrete Mathematics							
2.2	Subject area					Mathematics							
2.3	Course responsible/lecturer				Conf	Conf. Bogdan GAVREA, PhD math.							
2.4	2.4 Teachers in charge of applications												
2.5	Year of		2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject	DF/		
	study					category D					DOB		

3. Estimated total time

Year/ Sem.	Subject name	No. of	Course Applications		Course				Indiv. study	AL	dits		
		weeks	[hours/week]			[hours/sem.]				01	Credits		
				S	L	Ρ		S	L	Ρ			0
II / 1	Discrete Mathematics	14	2	1			28	14			62	104	4

3.1	Number of hours per week	3	3.2	of which, course	2	3.3	applications	1
3.4	Total hours in the curriculum	42	3.5	of which, course	2 8	3.6	applications	14
Indiv	idual study							Hours
Manu	ual, lecture material and notes, b	oibliog	raphy					40
Supp	lementary study in the library, o	nline a	and in th	ne field				-
Prep	aration for seminars/laboratory	vorks,	homew	ork, reports, po	ortfolios	essay	6	16
Tuto	ing							3
Exan	ns and tests							3
Othe	r activities							0
3.7	Total hours of individual study		62					1

3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	N / A
4.2	Competence	Mathematical analysis I and II, linear algebra

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Discussion(Seminar) Room, Cluj-Napoca

6. Specific competences

	Theoretical knowledge (what the student must know):	Mathematical models of discrete and continuous signals; the Z-transform and its inverse; the discrete and continuous Fourier transform; the Fast Fourier Transform; the Laplace transform; basic probability theory: mathematical definition of the probability concept, conditional probability, Bayes formula, the total probability formula, random variables/vectors (continuous and discrete), functions of random variables, numerical characteristics of random variables; brief overview of stochastic processes and Markov chains; introductory notions on interpolation theory.
Professional competences	Acquired skills (what the student is able to do):	After completing the discipline, the students will be able to: - be able to work with the studied discrete and continuous transforms; - be able to operate with probability rules; - be able to work with random variables; - be able to perform basic statistical analysis; - be able to use basic polynomial interpolation theory.
Pro	Acquired abilities	N.A.
	In accordance with Grila1 and Grila2 RNCIS	 C1. To use the fundamental elements regarding electronic devices, circuits, systems, instrumentation and technology C2. To apply basic methods for signal acquisition and processing C3. To apply knowledge, concepts and basic methods regarding computing systems' architecture, microprocessors, microcontrollers, programming languages and techniques
Cross	competences (Grila1 and Grila2 RNCIS <mark>)</mark>	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the use of continuous					
		and discrete transforms; understanding basic probability and					
		statistics principles.					
7.2	Specific objectives	 Use of the Z-Transform, discrete Fourier transform, Laplace transform and the (continuous) Fourier transform. Developing skills and abilities necessary in basic statistical analysis. Developing basic knowledge regarding data interpolation. 					

8. Contents

3.1.	Lecture (syllabus)	Teaching methods	Notes
	Mathematical representation of discrete and continuous signals. Approximating continuous signals by discrete signals. Convolution		
	product of discrete signals. l_1 and l_2 signals. Discrete linear systems: causal and non-causal systems, time-invariant systems.	cises	
	The Z-Transform. Basic properties of the unilateral Z-transform.	xer	
;	The inverse Z-transform. Digital filters and the Z-transform. Definition of	e D	
	the Discrete Fourier Transform (DFT). Examples of applications of the	ü	
	DFT in signal processing.	teact	bard
	Properties of the DFT. Parceval's identities. The Fast Fourier	, ion	ackbo
	Transform (FFT) and its computational advantages.	Presentation, em presentati	, bla
5	The Laplace transform. Definition and properties of the transform.	senta	ector
6	The Fourier transform on L1 and L2. The Cosine and Sine transforms.	res n p	ĨŎ
7	Basic probability theory. Field of events, probability space, probability measure. Basic probability properties. Geometric interpretation of the probability measure.	Presentation, exemplification, problem presentation, teaching exercises	Use of projector, blackboard
3	Conditional probability. Application: reliability of technical devices. Sequences of independent trials: Bernoulli scheme, Poisson scheme.	ation,	
)	The total probability formula and Bayes formula.	ific	
0	Random variables. Important discrete and continuous variables.	ldu	
1	Numerical characteristics of random variables. Functions of random variables. Random vectors.	exer	
12	A brief introduction to stochastic processes and Markov chains.		
13	Elements of interpolation theory: Lagrange and spline interpolation.		
4	Recapitulation. Preparation for the final exam.		
3.2.	Applications (seminar)	Teaching methods	Notes
	Discrete and continuous signals. Discrete linear systems.	0	
2	The Z-Transform. The inverse Z-transform. Digital filters and the Z-transform.	idactii work	
}	The DFT and FFT. The Laplace-transform.	a di	
	The (continuous) Fourier transform	oof tea	
5	Basic probability theory. Conditional probability. Bayes' formula and the total probability formula.	Didactic proof, didactic exercise, team work	
6	Random variables, random vectors and Markov chains.	act	
7	Elements of interpolation theory: Lagrange interpolation and spline	e) e	
	interpolation.		

- 056-2.
 - 2. Papoulis, A., Signal Analysis, McGraw-Hill Book Company, 1977, ISBN (10) 007-048-460-0.
 - 3. Atkinson, K., An Introduction to Numerical Analysis, 2nd edition, John Wiley and Sons Inc., 1989, ISBN (10) 047-162-489-6.
 - 4. Postolache, M., Lecture Notes in Probability & Statistics, Fair Partners, 2003, ISBN: (10) 973-847-007-2.
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship

stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluations

Activity	10.	Assessment criteria	10.	Assessment	10.	Weight in the		
type	1		2	methods	3	final grade		
Course		The level of acquired theoretical knowledge and problem solving skills		Final examination		- E, max 10 pts. 80%		
Application s (seminar)		The level of acquired abilities		- Continuous formative evaluation		- S, max 10 pts, 20%		
10.4 Minimum standard of performance								
		$S \ge 5$ and $E \ge 5$	and (),8E+0,2S ≥ 4.5				

Date of filling in 18.03.2015

Course responsible Assoc. Prof. Bogdan GAVREA, PhD Teachers in charge of applications Assoc. Prof. Bogdan GAVREA, PhD

Date of approval in the department 18.03.2015

Head of department Prof. Mircea IVAN, PhD