

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Clui-Napoca
12	Faculty	
1.2	Tacuity	
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer,
	Frogram of Study/Qualification	Applied Electronics/ Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E24.00, EA-E24.00

2. Data about the subject

2.1	2.1 Subject name				Electronics and Telecommunications Measurements						
2.2 Subject area					Electronics and Telecommunications Engineering						
2.3	Course respon	nsible	e/lect	turer		Assoc. Prof. Rodica Holonec, PhD					
2.4	Teachers in cl	harge	e of a	applications	;	Assoc. Prof. Rodica Holonec, PhD					
					Assistant Valentin Zaharia, PhD						
2.5	Year of study	II	2.6	Semester	2	2.7	Assessment	Exam	2.8	Subject category	DID/DOB

3. Estimated total time

Year	Subject name	No.	Course	Арр	licatio	ons	Course	Арр	olicati	ons	Indiv.		
/		of									study	"AL	dits
Sem.		weeks	[hou	urs/w	eek]		[hours/sem.]			ē	Cree		
				S	L	Ρ		S	L	Ρ			0
	Electronics and	14											
II / 2	Telecommunications		2	1	1		28	14	14		48	104	4
	Measurements												

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Indivi	dual study							Hours
Manu	al, lecture material and notes, b	ibliogr	aphy					28
Supp	lementary study in the library, o	nline a	nd in th	e field				
Prepa	aration for seminars/laboratory v	vorks,	homewo	ork, reports, portfo	lios	, essays		18
Tutor	ing							1
Exams and tests							1	
Other activities							0	
37	Total hours of individual study		48					

3.7	I otal hours of individual study	48	1
3.8	Total hours per semester	104	1
3.9	Number of credit points	4	1

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Relations and theorems for electric circuits, operating principles
		for electronic devices: diode, operational amplifier; use of
		electronic devices in electronic circuits; analysis methods for
		electronic circuits;

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Seminar room, Laboratory, Cluj-Napoca

6. Specific competences

		After completing the discipline, the students will be able to:
	hat st	-Understand the principles of electronic instrumentation.
	_ ^(M)	-Understand the main specifications of a measuring system
	ical Ige ent	-Explain basic concepts and definitions in measurement.
	rret /lec :ude:	-Explain the operation and design of electronic instruments for parameter measurement
	hec e st now	-Design and configure a measurement diagram or system using the proper measurement
	トマモス	method and devices
):):	After completing the discipline, the students will be able to:
	dv) do	-Use the electronic measurement devices: The oscilloscopes, The transistors curve tracers,
	e to	electronic voltmeters, electronic counters
	abl	-Record, process and analyze the experimental measurement data
es	s nt is	-Interpret the measurement data
suc.	red	-Configure an experimental diagram choosing the correct measurement method and devices
bete	stu stu	- Compare simulation results with experimental values
dmo	Acthe	
) at	After completing the discipline, the students will have skills in :
anc	wha	-Using the measurement devices; ac and dc measurement bridges, analogue and digital
ssi	is: (t the har	oscilloscope, transistor curve tracer, analogue and digital multimeters, the electronic counters
ofe	ed abilitie equipmen t is able to	-Utilizing a PC-based hardware that provides interaction with external signals, sensors and
Р		devices.
		-Programming virtual instruments in LabVIEW (Laboratory Virtual Instrumentation
	quir e of den	Engineering Workbench) -basic level
	Accentrype	
	_	C1. To use the fundamental elements regarding electronic devices, circuits, systems,
	with la2	instrumentation and technology
	Gri	C2. To apply basic methods for signal acquisition and processing
	nd ICIS	C4. To design, implement and operate data, voice, video and multimedia services, based
	corc 1 a RN	on the understanding and application of fundamental concepts from the field of
	acc	communications and information transmission.
	<u>ں</u> ت	C5. To select, install, configure and exploit fixed and mobile telecommunications
ç	nd v	N.A.
SS	la2 CIS	
S to	S Gri Der	
<u> </u>	<u></u>	
Ċ	ر د	

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the principle, use, and design of electronic and telecommunications measuring methods and devices.
7.2	Specific objectives	 Understand the principles of electronic and instrumentation. Developing skills and abilities necessary for the use of electronic measuring devices. Developing skills and abilities for design and configure a measurement system using the proper electronic and telecommunications methods and devices

8. Contents

8.1.	Lecture (syllabus)	Teaching	Notes
_	Management for demonstrate Terror and definitions. The structure of a	methods	
1	complex instrumentation system. Sensors	_	
2	Fundamentals of Metrology. Measurement Units. Measurements	ing	
	Standards. Traceability. Measurement terminology. Errors and	ch	
	Uncertainties. The Measuring Instrument Specifications.	ea	
3	Random Errors Analysis. Basic Concepts in Probability. Normal	J, t	
-	Distribution. Central Limit Theorem. The Evaluation of Uncertainties in	tion	q
	Measurements	n ata	oar
4	Meters, Analog Meters-Classifications and Symbols, Types of Analog	atic	kbc
	Instruments, Voltmeters, Ammeters, Wattmeters, Ohmmeters	lua	ac
5	Measurements with Bridges and Potentiometers. Wheatstone Bridge	d L s a	pl
Ŭ	Principle, Applications, Types of AC bridges, Potentiometers,	len e e	tor
6	Amplification in Instrumentation Operational Amplifiers Basic circuits	, ob l	ect
Ŭ	Instrumentation Amplifiers, Current to Voltage, Resistance to Voltage	na ra	Ō
	Converters Bridge Amplifiers	ati on,	, p
7	Electronic Voltmeters DC Electronic Voltmeters Types of AC	ent y, †	lo
'	Electronic Voltmeters, Lock-in Amplifiers, Principles and Applications	fice	tati
Q	Electronic Counters, Digital measurement of frequency and time	pli pli	eni
0	Digital Multimeters, Computing Measuring Systems, Data Acquisition	em	es
9	Boards. Sample and Hold Circuits. Nyquist theorem.	, ex	ot pr
10	Data Acquisition Boards Components. Digital to Analog Converters.	on	d.
	Analog to Digital Converters. Virtual Instruments	erc	of
11	The Analog Oscilloscope: The Cathode Ray Tube, Vertical Deflection,	ers	e
	The Sensitivity of Y Channel, The Attenuator on Channel Y.	2 L	ñ
12	The Analog Oscilloscope: The Horizontal or Time Base Channel. The	8	
	Double Channeled Oscilloscope. The Digital Oscilloscope	tic	
13	Power Measurement. Definitions. DC and AC Power Measurements.	ILIS.	
	Digital Wattmeters	nen	
14	Spectral Analyzers. Overview. Working principles and architectures	<u> </u>	
	Real-Time Spectrum Analyzers. Performance Criteria. Applications		
0.0		Teaching	Notes
8.2.	Applications (lab and seminar)	methods	
1 L	Analog Measurement Devices	Exposure	Use of
2 L	The Extension of the Domain of Measurement at the Analogue	applications	laboratory
	Instruments	didactic	instruments
3 L	Digital Measurement Devices	exercise, team	Computer
4 L	The Oscilloscope, Basics and Measuring Principles	work	LabView.
5 L	Digital Measurement of Time and Frequency		white board
61	Virtual Instrumentation: LabView - Basic Operations		
71	Introduction to Data Acquisition Systems		
1 9	Measurement Fundamentals Measurement Units Significant Figures		
	Meter Loading - Voltage Measurement		
29	Frons Computation Errors in Single Measurements Direct and		Blackboard
20	Indirect Measurements	Exposure	Video-
1			

_			
3.S	Random Errors Analysis. Repeated Measurements. Statistical	Exercises	projector,
	Parameters	Case studies	computer
4 S	Measurement Uncertainties Computation. Parameters of Periodic		Excel
	Signals		
5 S	Measurements using bridges. DC Bridges. AC Bridges		
6 S	The oscilloscope.		
7 S	Phase Measurement. The Gilbert Cell.		
Bibl	iography		
1. I	Rodica Holonec, Electrical Measurements and Instrumentation, Editu	ra Mediamira,	Cluj-Napoca,

- 2003, 259 p, ISBN 973-9357-42-3
 Todoran,Gh.,Copandean,R; Masurari Electrice si Electronice.Editura Mediamira; Cluj Napoca. 2003.
- I odoran,Gh.,Copandean,R; Masurari Electrice si Electronice.Editura Mediamira; Cluj Napoca. 2003. 282p. ISBN 973-9357-61-X.
- Munteanu, R., Todoran, Gh.; Teoria si practica prelucrarii datelor de masurare; Editura Mediamira 1997. Cluj Napoca. 350p ISBN 973-9358-09-8.
- 4. Todoran, Gh. Masurari numerice; Editura UTPRES Cluj Napoca 1997.200p,ISBN 973-98380-3-0
- Antoniu M., Masurari electronice. Metrologie, aparate de masura analogice, Ed. SATYA, Iasi, 1999. ISBN 973-9178-22-7
- Antoniu M., St. Poli, E. Antoniu, Marurari electronice. Aparate si sisteme de masura numerice, Ed. SATYA, Iasi, 2000, ISBN 973-97945-4-8
- 7. Antoniu M, Măsurări electronice: Măsurări la frecvenţe joase, înalte şi optice Ed. SATYA, lasi, 569p ISBN 973-98708-3-X
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the			
						final grade			
Course		Final exam (E)-Theoretical questions and exercises (3		- Written examination		60%			
		nours)							
Applications		Mid exam (ME)-Exercises (2 hours).		Written examination		20%			
		Practical circuit (P)		Checking of functionality		10%			
		Homework (HW)		Verification of results		10%			
10.4 Minimu	10.4 Minimum standard of performance								
	G=(E+ME+P+HW)/100: Condition to take the credits: G>5:								

10. Evaluations

Date of filling in
25.01.2015Course responsible
Assoc. Prof. Rodica HOLONEC,
PhDTeachers in charge of applications
Assistant Valentin ZAHARIA, PhD

Date of approval in the department 25.01.2015

Head of department Prof. Calin MUNTEANU, PhD.