UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca			
1.2	Faculty	Electronics, Telecommunications and Information			
	lacuity	Technology			
1.3	Department	Communications			
1.4	Field of study Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science			
1.6	Program of study/Qualification	Telecommunications Technologies and Systems			
1.7	Form of education	Full time			
1.8	Subject code	TST-E40.00			

2. Data about the subject

2.1	Subject name					Decision and estimation in information processing					
2.2	2 Subject area				Electronics and Telecommunications Engineering						
2.3	2.3 Course responsible/lecturer Profes				fessor Monica	BORDA	, Ph	iD			
2.4	Teachers in charge of applications				;	Professor Monica BORDA, PhD					
	Assistant Mihaela Cislariu, PhD										
				Assistant Ioana Ilea							
2.5	Year of study	Ш	2.6	Semester	2	2.7	Assessment	Exam	2.8	Subject category	DID/DOB

3. Estimated total time

Year/	Subject name	No.	Course	App	lication	ons	Course	App	licati	ons	Indiv.		
Sem.		of									study	_ <u>_</u>	dits
		weeks	[hou	ırs/ w	/eek]		[hours/ semester]		[5	Credits			
				S	L	Р		S	L	Р			
	Decision and	14											
III/2	estimation in		2	0	2		28	0	28		74	130	5
	information processing												

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Individual study								
Manual, lecture material and notes, bibliography								56
Supplementary study in the library, online and in the field								8
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								4
Tutoring								2
Exams and tests								3
Other activities								1

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	NA
4.2	Competence	NA

5. Requirements (where appropriate)

5.1	For the course	Cluj-Napoca
5.2	For the applications	Cluj-Napoca

6. Specific competences

Professional competences	C4. To design, implement and operate data, voice, video and multimedia services, based on the understanding and application of fundamental concepts from the field of communications and information transmission. C5. To select, install, configure and exploit fixed and mobile telecommunications equipment. To equip a site with common telecommunications networks. C6. To solve wide-band telecommunications networks' specific problems: propagation in various transmission media, high frequency circuits and equipment (microwaves and optical).
Cross	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Development of professional abilities in the domain of binary
		decision and signal and parameter estimation systems.
7.2	Specific objectives	Gain of theoretical knowledge concerning the design of decision and estimation systems. Gain of theoretical knowledge concerning design of random processes, Markov processes and of the noise in digital communication systems. Achievement of abilities and skills necessary for the implementation of software applications or hardware schemes using MATLAB and LABVIEW tools

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Random variables.	_	
2	Random processes. Stationarity and ergodicity	n, em ercise, luation	
	Noise sequences and pseudo-noise sequences.	٦, erc lua	
4	Markov processes.	tion bble exe	ard
5	Noise: definition, classification, models.	on, rsa prc ng e e	blackboard
6	Noise in telecommunications systems.	ntation Inversion, p Ion, p Inative	ck
7	Theory of decision. Decisions criteria (Bayes, Kotelinkov-Zeigert, Fischer, Min-max, Neyman-Pearson)	senta con catio , teac	of bla
8	Binary decision with discrete observation.	Pre isti plif ion iy, 1	
9	Binary decision with continuous observation	P neuris xemp entatic study	Use
10	Theory of parameter estimation	heur exerr esenta se stuc	
11	Model of an ITS with parameter estimation. Discrete and continuous observation. Costs function.	pres	

12	Minimum mean square error estimation. MAP estimation		
13	Continuous observation random signal estimation		
14	Review of the course concerning the exam.		
8.2.	Applications (lab)	Teaching methods	Notes
1	Introduction. Random variables		_
2	Experimental determination of the probability distribution function	უ <u>ო</u> .º E	laboratory ientation, outers, xboard
3	Pseudo-noise sequences	ental ental dactic team k	atic atic ars,
4	Markov processes	1 W 1 Y	abc ent ute boo
5	Noise in telecommunications systems	act erii f, c	of laboraritumentatic
6	Binary decision system	Didactic experime proof, dic exercise, work	Jse of laborato instrumentation computers, blackboard
7	Parameter estimation system	0 G 9	Use inst c

Bibliography

- M. Borda, Fundamentals in Information Theory and Coding Springer 2011, ISBN 978-3-642-20346-6, 509p
- S. M. Kay Fundamentals of statistical signal processing, Vol. 1: Estimation Theory, Prentice Hall 1993
- S. M. Kay Fundamentals of statistical signal processing, Vol. 2: Detection Theory, Prentice Hall 1998
- 4. Monica Borda Information Theory and Coding, Editura UT PRES, 2007
- M. Simon, S, Hinedi, W, Lindsey Digital Communications Techniques. Signal Design and Detection, Prentice Hall, 1994
- 6. M. Barkat Signal Detection and Estimation, Artech House, 1991
- 7. I.Sztojanov, I. Gavăt, I. Spânu, M. Bâtiu Teoria Transmiterii Informaţiei- îndrumător de laborator, Litografia IPCN 1983, tradus in limba engleză, format pdf
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final
						grade
Course		The level of acquired		Written exam		75%
		theoretical knowledge and		composed of 4-5		
		practical skills		theoretical subjects		
				and 3-4 problems		
Applications		The level of acquired abilities		- Continuous formative		25%
				evaluation consisting of	•	
				5 written lab tests		

10.4 Minimum standard of performance

Correct answer of at least 3 theoretical subjects and 2 problems, and at least an average of 5 (out of 10) at the laboratory tests.

Date of filling in 01.10.2014

Course responsible Professor

Monica BORDA, PhD

Teachers in charge of applications Assistant Mihaela Cislariu, PhD Assistant Ioana Ilea

Date of approval in the department 01.10.2014

Head of Communications Department Professor Virgil DOBROTA, PhD