

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Fooulty	Electronics, Telecommunications and Information
	Faculty	Technology
1.3	Department	Communications
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/
	Togram of study/Qualification	Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E41.00

2. Data about the subject

2.1	Subject name	Switching and Routing Systems						
2.2	Subject area	Electronics and Telecommunications Engineering						
2.3	Course responsible/lecturer	Professor Virgil DOBROTA, Ph.D						
2.4	Teachers in charge of applications	Assistant Professor Bogdan RUS, Ph.D						
		Assistant Professor Tudor BLAGA, Ph.D						
2.5	Year of study III 2.6 Semester 2	2.7 Assessment Exam 2.8 Subject category DS/DOB						

3. Estimated total time

Year/	Subject name	No.	Course	Арр	licatio	ons	Course	App	olicati	ons	Indiv.		
Sem.		of									study	JAL	dits
		weeks	[hou	irs/ w	/eek]		[ho	ours/	seme	ester		<u>[</u>]	Credits
				S	L	Ρ		S	L	Р			U
III/2	Switching and Routing Systems	14	2		2	1	28		28	14	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4	Total hours in the curriculum	70	3.5	of which, course	28	3.6	applications	42
Individual study								
Manual, lecture material and notes, bibliography								26
Supp	lementary study in the library, o	nline a	and in th	e field				-
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios	, essays	;	28
Tutor	ing							3
Exams and tests								3
Other activities								
37	Total hours of individual study		60					

3.1	I otal nours of individual study	60	
3.8	Total hours per semester	130	
3.9	Number of credit points	5	

4. Pre-requisites (where appropriate)

4.1	Curriculum	N.A.
4.2	Competence	To know the space-division and time-division switches; To understand
		the principles of circuit switching and packet switching; To get basic
		knowledge of queueing systems as major mathematical models for
		network design; To know the principles of next generation networks
		from routing point of view

5. Requirements (where appropriate)

5.1	For the course	Cluj-Napoca
5.2	For the applications	Cluj-Napoca

6. Specific competences

Professional	understanding and application of fundamental concepts from the field of communications and
Pre	a site with common telecommunications networks.
Cross competences	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the switching and routing in telecommunications networks
7.2	Specific objectives	 Developing skills and abilities to design and to simulate switches and routing algorithms using programs developed within the laboratory. Developing skills and abilities to install and to configure an Asterisk-based software switch.

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Digital Switching Functions. Single Stage Space-Division Switch. Classification of Multiple Stage Switches	l tive	
2	Multiple Stage Switch with Complete Permutation Paths (Clos). Strictly Non-Blocking Three-Stage Clos Switch. Blocking Probabilities. Lee's Method. Generalization of Clos Condition	<u>~ @ 0 0 _ </u>	presentation, blackboard
3	Multiple Stage Switches with Single Path (Banyan). Batcher-Banyan Switches. Software Package for the Simulation of Batcher-Banyan Switches	esentation c convers ication, pr iation, tea ise study, valuation	opt pres or, blacl
4	Multiple Stage Switches with Multiple Path. Time-Division Switching: T. Time-Space-Division Switching: TS	Pre heuristic xemplifi present cise, ca	Use of .ppt projector, t
5	STS Switch. TST Switch. TSSST Switch. Examples of Telephone Exchanges and Switch Fabrics (optional). Digital Telephone Exchange Functions: BORSCHT	e r	Use P

6	Traffic Analysis. Characteristics of a Queueing System. Models for		
-	Clients Arrivals: Bernoulli, Poisson		
7	M/M/1/infinite System. M/M/1/N System		
8	M/M/m/∞ System. Erlang C Formula. M/M/m/m System. Erlang B Formula.		
9	M/D/m/∞ and M/D/1/∞ Systems. M/G/1/∞ System. Pollaczek-Khinchin		
Ŭ	Formula. Traffic Processing in Telecommunications		
10	Routing Algorithms. Basics of Routing: Definitions		
-	Bellman-Ford Algorithm. Dijkstra's Algorithm		
	Floyd-Warshall Algorithm. Comparison between Bellman-Ford,		
	Dijkstra's and Floyd-Warshall Routing Algorithms. Cost function		
13	Optimal routing. Link capacity. Latency. Link flow. Round-trip delay.		
	Cost function. Minimizing the cost function. Randomization and		
	metering methods.		
14	Review. Examples of subjects given in the previous academic year		
82	Applications (lab)	Teaching	Notes
		methods	
1	Linux Fedora Core Installation		
	Introduction to Linux. Working with files.	é	
3	Strictly Non-Blocking Three-Stage Clos Switch. Software Package for	exercise	Ital
4	Designing of Clos Switches Software Package for the Simulation of Rectangular Delta Switches.	xer	laboratory instrumentation, experimental computers, magnetic board
4	Software Package for the Simulation of Rectangular Omega Switches.		rin
5	Multiple Stage Switches with Multiple Paths (Benes). Software	ctic	be
5	Package for the Simulation of Benes Switches.	ida	o [©]
6	STS Switch. Software Package for the Designing of STS Switches	, d	on, oar
	TST Switch. Software Package for the Designing of TST Switches	oof	atio bc
8	Software Package for the Calculation of Binomial Bernoulli, Normal	bud	ent
Ŭ	Laplace-Gauss and Poisson Distributions. Software Package for the	Ital	un an
	Calculation of Erlang B and Erlang C Formulas	ner	na
9	Problems within Chapter 2 (Traffic Analysis)	rrin	s, r
	Problems within Chapter 1 (Digital Switching) + Chapter 2 (Traffic	experimental proof, didactic	laboratory instrumentation, computers, magnetic board
	Analysis)	e	ipu
11	Software Package for Bellman-Ford Algorithm	k	orro
12	Software Package for Dijkstra's Algorithm	ic a vor	i, c
13	Floyd-Warshall Algorithm. Software Package for Floyd-Warshall	n v	rds
	Algorithm	Didactic and team work	Use of I boards,
14	Recovery Laboratory. Questions		
8.3.	Applications (project)	Teaching methods	Notes
1	IPv4 Addressing		
2	Project subject using Xorcom, version 2.1.0, with DAHDI modules		ć
	enabled or Debian Live Project- based Asterisk version 1.6.2.9-2.	of,	itioi irs,
	Configuration of Asterisk IP-Based PBX and VoIP terminals: X-Lite	proof, irk	ute
	and Zoiper	and experimental pr exercise, team work	Use of laboratory instrumentation, experimental boards, computers, magnetic board
3	Working for project: Implementation of a dial plan for Asterisk with	ent: n w	cor
	minimum two SIP clients and two IAX clients. Implementation of	ar	nst Is, i
	common functions: DIAL, RINGING, ANSWER, HANGUP.	eri , t(i y i ard
	Implementation of two particular functions (e.g. VOICE-MAIL,	expense	rd bo
	CONFERENCING, SAY, PLAY, WAIT, AUTHENTICATE, TIMEOUT, RECORD).	erc	orë oa
4	Working for project: Implementation of SIP functions	ex	lab eni c b
4 5	Working for project: Implementation of IAX2 functions	Didactic and experimental didactic exercise, team wo	Use of laboratc experimental bo magnetic board
6	Working for project: Integration of SIP and IAX2 functions	dac	Use of experim magnet
7	Project Defending	ġ Ď	й ё й
<u> </u>		L	1

Bibliography

- 1. V. Dobrota, *Retele digitale in telecomunicatii. Volumul I: Comutatia digitala. Analiza traficului. Editia a III-a*, Editura Mediamira, Cluj-Napoca 2002
- 2. J. Bellamy, Digital Telephony. Third Edition. John Wiley & Sons, Inc. USA 2000 http://el.el.obs.utcluj.ro/scr/pdf/Digital Telephony.pdf
- 3. D. Bertsekas, R. Gallager, Data Networks. Second Edition. Prentice-Hall Inc., USA 1992 http://web.mit.edu/dimitrib/www/datanets.html
- 4. R. Bryant, L. Madsen & J. Van Meggelen, Asterisk™: The Definitive Guide. Fourth Edition. O'Reilly Media Inc, 2013, <u>http://el.el.obs.utcluj.ro/scr/pdf/Asterisk The Definitive Guide 2013.pdf</u>
- 5. Van Mieghem, Performance Analysis of Complex Networks and Systems, Cambridge University Press, 2014, <u>http://www.nas.its.tudelft.nl/people/Piet/bookPA.html</u>

On-line references

- 1. V. Dobrota, Switching and Routing Systems. Technical University of Cluj-Napoca, 2015 http://el.el.obs.utcluj.ro/scr/en_index.htm
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course		The level of acquired theoretical knowledge and practical skills		Theoretical Test (mark T) : 9 questions		T, max 10 pts. 50%			
Applications		The level of acquired abilities		Project (P1): oral and practical exam based on laboratory and project work Problem (P2) written exam to solve a problem covering all chapters		P1, max. 5 pts. 25% P2, max. 5 pts 25%			
10.4 Minimu	m stan	dard of performance		•		•			
	$T \ge 5$ and $P=P1+P2 \ge 5$ and $(T+P)/2 \ge 4.5$								

Date of filling in 01.10.2014

Course responsible Professor Virgil DOBROTA, PhD Teachers in charge of applications Assistant Professor Andrei Bogdan RUS, PhD Assistant Professor Tudor Mihai BLAGA, PhD

Date of approval in the department 01.10.2014 Head of Communications Department Professor Virgil DOBROTA, PhD