

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca			
1.2	Faculty	Electronics, Telecommunications and Information			
		Technology			
1.3	Department	Bases of Electronics			
1.4	Field of study	Electronics and Telecommunications Engineering			
1.5	Cycle of study	Bachelor of Science			
1.6	Program of study/Qualification	Telecommunications Technologies and Systems / Engineer			
1.7	Form of education	Full time			
1.8	Subject code	TST-E45.00			

2. Data about the subject

2.1	2.1 Subject name				Digit	Digital Signal Processing						
2.2	2.2 Subject area					Signal Processing						
2.3	Course respon	nsible	e/lect	turer		Assoc.Prof. Lăcrimioara GRAMA, PhD eng.						
2.4	2.4 Teachers in charge of applications Assoc.Prof. Lăcrimioara GRAMA, PhD eng.											
2.5	Year of study	IV	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DID/DOB	

3. Estimated total time

Year	Subject name	No.	Course	App	licatio	ons	Course	Applications		Applications Indiv.			
/		of									study	JAL	dits
Sem.		weeks	[hou	urs/w	rs/week] [[hours/sem.]				101	Cre	
				S	L	Ρ		S	L	Ρ			Ŭ
IV /	Digital Signal	14	2		2		28		20		19	104	4
1	Processing		2		4		20		20		40	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Individual study Ho								
Manu	al, lecture material and notes, b	ibliogr	aphy					24
Supp	ementary study in the library, or	nline a	nd in th	e field				6
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios,	essays		12
Tutor	ing							3
Exam	s and tests							3
Other activities								
3.7	Total hours of individual study		48					•

3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A					
4.2	Competence	Knowledge of mathematics (Mathematical Analysis, Linear					
		Algebra, Special Mathematics, Differential Equations, Discrete					
		Mathematics), signal theory (Signals Theory, Analysis and					
		Synthesis of Circuits), electronic devices, digital integrated					
		circuits; use of MATLAB development environment					
		(Fundamentals of Computer Aided Graphics)					

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca			
5.2	For the applications	Laboratory, Cluj-Napoca			

6. Specific competences

		The students will know:
	what ust	 Techniques for the analysis of periodic and aperiodic sequences and discrete-time systems
	etical edge (¹ dent m	 Appropriate software for the analysis of discrete-time signals and for the design of
	Theore knowle the stue know):	 Assessment and interpretation methods of the data obtained from analysis of discrete- time signals and systems
	(what do):	After completing the discipline, the students will be able to: ✓ Implement different structures of digital filters based on the design data
es	kills able to	 Design, evaluate and optimize the structures of digital filters based on the application Analyze data obtained by analyzing signals using Discrete Fourier Transform
etenc	ed s lent is	 Interpret specific phenomena in signal analysis using Fast Fourier Transform
Professional comp	Acquire the stuc	
	Acquired abilities: (what type of equipment the student is able to handle)	 After completing the discipline, the students will be able to: ✓ Use programs for signal analysis and for design of FIR or IIR digital filters ✓ Use specific software and hardware tools for properly design of FIR and IIR systems ✓ Evaluate the quantities which characterize the performance of digital filters based on the family of DSP circuits in which they are implemented
	In accordance with Grila1 and Grila2 RNCIS	C2. To apply basic methods for signal acquisition and processing C3. To apply knowledge, concepts and basic methods regarding computing systems' architecture, microprocessors, microcontrollers, programming languages and techniques
Cross competences (Grila1 and Grila2 RNCIS)		CT1. To methodically analyze engineering problems, by identifying the basic elements for which well-established solutions already exist, ensuring the fulfillment of the professional assignments

7.1	General objectives	At the end of the semester, students should be able to:				
		✓ Apply methods of analysis and synthesis of discrete-time				
		signals and systems				
		✓ Design digital filters for different applications				
7.2	Specific objectives	At the end of the semester, students should be able to:				
		✓ Use techniques for analyzing periodic and aperiodic				
		sequences and discrete systems				
		✓ Use the appropriate software for the analysis of discrete-				
		time signals and to design digital filters				
		\checkmark Illustrate the advantages and limitations posed by the				
		designed filters				
		✓ Interpret the data obtained from analysis of discre				
		signals and discrete systems				
		✓ Effectively use information sources and computer aided				
		communication and training resources (internet, signal				
		processing software, scientific databases in the field of				
		digital signal processing) both in Romanian and in English				
		✓ Evaluate the quantities which characterize the				
		performance of the digital filters based on the family of				
		DSP circuits in which they are implemented				

7. Discipline objectives (as results from the key competences gained)

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1 2	Introduction to digital signal processing. Discrete-time signals and systems (Signals and systems: frequency, angular frequency, alias effect; Discrete-time signals: definition, classification, manipulation; Discrete-time systems: block diagram, classification, interconnection) Analysis of discrete-time linear time invariant systems (Convolution sum and impulse response sequence; Causality; Stability; FIR and IIR	n, problem se study, J	
3	systems; Direct-forms; Correlation) Frequency analysis of discrete-time signals and systems (Fourier series and transform)	on, mplificatio ercise, ca uestioning	board
4	Frequency domain characteristics of of linear time invariant systems	ntati exer ι exi η, qι	ack
5	Discrete Fourier transform and its applications	ser n, e iing	q
6	Fast Fourier transform and its applications	^o re atio stra	o o
7	The <i>z</i> -transform (definition, convergence, inversion, properties)	I ersa ons	Use
8	Applications of the z-transform	on, em	_
9	Analysis of linear time invariant systems in z domain (Transient and	col d	
	steady-state response; Causality and stability; Schur-Cohn stability	stic	
	test)	uris	
10	Structures for implementing finite impulse response systems (direct-	he	
	form, cascade-form, frequency-sampling structure, lattice structure)		
11	Structures for implementing infinite impulse response systems (direct-		

	forms, cascade-form, parallel-form, lattice and lattice-ladder structures)		
12	Design of filters in frequency domain. Design of finite impulse response		
	filters (Linear-phase FIR filters: windowing method, frequency-sampling		
	method; optimum equiripple FiR filters)		
13	Design of infinite impulse response filters (Design of IIR filters from		
	analog filters: approximation of derivatives, impulse invariance and		
	bilinear transformation methods; Frequency transformations; Pade		
	approximation)		
14	Recapitulation. Preparation for the final exam		
8.2	Applications (lab)	Teaching methods	Notes
1	Introduction to MatLAB		
2	Discrete-time signals	Ϋ́ζ,	4 ard
3	Sampling of analog signals	e, ork	and boa
4	Discrete-time linear time-invariant systems	e s oat	
5	Fourier transform and Discrete Fourier transform	det am	are bla
6	Linear and circular convolution	te, o	lfw Ig,
7	Finite impulse response filters. Design method	tion atio	so
8	Discrete-time linear time-invariant systems as frequency selective	stra	ific tec
	filters	pla ons stic	or
9	Infinite impulse response filters. Indirect design methods	em ex	sp le f
10	Infinite impulse response filters. Direct design methods	on, I de g, c	Cs, uic
11	Structures for the realization of finite impulse response systems	atio ica /inę	Уq
12	Structures for the realization of infinite impulse response systems	ers act ve)	tor
13	Practical evaluation (laboratory test): 30 minutes for each student	pra Bur	Jse ora
14	Lab recovery and finalization of laboratory activity (100 minutes for	ပိုက်	abí
	each lab which must be recovered)	-	
Bib	liography		
1.	C. Rusu, L. Grama, Lecture notes in digital signal processing, Ed. Risopri	nt, 2009.	
2.	C. Rusu, Prelucrarea numerică a semnalelor, Ed. Risoprint, 2002.		
3.	C. Rusu, Prelucrări digitale de semnale, Ed. Risoprint, 2000.		
4.	L. Grama, Digital signal processing - laboratory guide, Ed. UTPRESS, 20	14.	
5.	L. Grama, C. Rusu, Prelucrarea numerică a semnalelor - aplicații și probl	eme, Ed. UTPF	RESS, 2008.
6.	L. Grama, A. Grama, C. Rusu, Filtre numerice – aplicații și probleme, Ed.	UTPRESS, 20	08.
7.	L. Grama, Prelucrarea numerică a semnalelor – îndrumător de laborator,	Ed. UTPRESS,	, 2014.
8.	J. G. Proakis, D. G. Manolakis, Digital signal processing - principles, algo	rithms and app	lications,
	Prentice Hall International, 2006.		
9.	S. Mitra, Digital signal processing – a computer based approach, McGraw	/ Hill, 2006.	
On	line references		
1.	Discipline web page (lecture description, laboratory examples and e	xercises, solve	ed problems,
1	proposed problems, homework) – http://sp.utcluj.ro/Teaching IIIEA.html		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job (in the field of signal analysis, and digital system design, simulation and testing), and the expectations of the national organization for quality assurance (ARACIS).

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the
						final grade
Course		The level of acquired		H – continuous		WE – max. 10
		theoretical knowledge and		formative evaluation		pts., 50%
		practical skills		(homework) – max. 2		
				pts.		
				B – continuous		
				formative evaluation		
				(responses to		
				questions) – max. 2		
				pts.		
				WE – Summative		
				evaluation written		
				exam (problems		
				solving)		
Applications		The level of acquired		LE - Continuous		
		knowledge and abilities		formative evaluation		L= PE+LE -
				(lab activity, etc.)		max. 10 pts., 50%
				PE - Practical lab exam		
				(exercises must be		
				implemented in		
				MatLAB)		
10.4 Minimu	um sta	andard of performance				
		$L \ge 5$ and $WE \ge 4$ and	0,5V	/E+0,5L+ H + B ≥ 4.5		

10. Evaluations

Date of filling in 19.01.2015

Course responsible Assoc.Prof. Lăcrimioara Grama, PhD Teachers in charge of applications Assoc. Prof. Lăcrimioara Grama, PhD

Date of approval in the department 19.01.2015

Head of department Prof. Sorin Hintea, PhD