SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer, Applied Electronics/ Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E10.00, EA-E10.00

2. Data about the subject

2.1	Subject name					Differential Equations							
2.2	Subject area				Mathematics								
2.3	Course responsible/lecturer					Prof. mat. Dorian POPA, PhD							
2.4	Teachers in charge of applications					Assoc. Prof. mat. Ioan Radu PETER, PhD							
2.5	Year of	I	2.6	Semester	2	2.7	Assessment	Exam	2.8	Subject	DF/		
	study									category	DOB		

3. Estimated total time

Year/ Sem.	- · · · , · · · · · ·	No. of	Course Applications			Course	Арр	olicati	ons	Indiv. study		redits	
		weeks	[hours/week]				[hours/sem.]					0	Cree
				S	L	Ρ		S	L	Р		F	0
1/2	Differential Equations	14	2	2			28	28			74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4	Total hours in the curriculum	42	3.5	of which, course	28	3.6	applications	28	
Indivi	Individual study								
Manu	ual, lecture material and notes, t	bibliogr	aphy					40	
Supplementary study in the library, online and in the field							-		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28		
Tutoring							3		
Exams and tests							3		
Other activities							0		
3.7	Total hours of individual study		74						
3.8	Total hours per semester		130						
3.9	Number of credit points		5						

Acquired competences :

Acquired skills (what the student is able to do):

Notions and results concerning differential equations and partial differential equations of order one and two. Cauchy problem for different type of equations. Bessel equation and Bessel functions. Dynamical systems.

Acquired abilities: (what type of equipment/instruments/software the student is able to handle)

To solve a differential equation and a system of differential equations.

To operate with Bessel functions

To use differential equations in some applications

Prerequisites (if necessary)

Notions on mathematical analysis, algebra and trigonometry from high school

A. Course/Lecture (course/lecture titles)

- 1. Examples which lead to differential equations
- 2. Basic notions. Problems concerning differential equations
- 3. Differential equations of order one
- 4. Existence and uniqueness theorem for the Cauchy problem
- 5. Linear equations of order n.
- 6. Linear and homogeneous with constant coefficients
- 7. Linear and nonhogeneous equations with constant coefficients.
- 8. Series solutions for differential equations
- 9. Bessel equation and Bessel functions
- 10. Linear systems of differential equations
- 11. Partial Differential Equations of order one.
- 12. Cauchy problem for partial differential equations of order one
- 13. Linear partial differential equations of order two.
- 14. Wave equation .Separation of variables.

B1. Applications - Seminar (contents)

- 1. Differential equations of order one
- 2. Problems concerning differential equations of order one
- 3. Differential equations reducible to order one
- 4. Cauchy problem. Differential inequalities
- 5. Linear and nonhomogeneous equations of order n
- 6. Differential equations integrated by series
- 7. Applications of Bessel functions
- 8. Systems of differential equations
- 9. Applications of Laplace transform
- 10. Partial differential of order one
- 11. Linear partial differential equations of order one
- 12. Cvasilinear partial differential equations of order one
- 13. Partial differential equations of order two
- 14. Applications of partial differential equations of order two.
- C. Individual study (reference study contents, synthesis materials, projects, applications etc.)

14 sets of problems (the preparation part in every laboratory).

Applications of differential equations in comunications.

References (Textbooks, courses, laboratory manual, exercise book)

- 1. V. Barbu, Ecuatii diferentiale, Editura Junimea, 1985.
- 2. Peter J.Collins, Differential and Integral Equations, Oxford University Press, 2005.
- 3. R.P.Agarval, D.O'Regan, An Introduction to Ordinary Differential Equations, Springer, 2008.
- 4. D.Popa, Calculus, Mediamira Cluj-Napoca, 2006.

Final evaluation

T mai cvaluation							
Evaluation method	Writen paper – 3 hours, containing theory and problems. After 7 courses partial evaluation (3 hours)						
Mark components	Seminar S Theory T Problems P						
Mark computation	N=0,2S+0,2T+0,6P						

Date of filling in	Course responsible
18.03.2015	Prof. Dorian POPA, PhD

Date of approval in the department 18.03.2015

Teachers in charge of applications Assoc.Prof. Ioan Radu PETER, PhD

> Head of department Prof. Mircea IVAN, PhD