

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca					
1.2	Faculty	Electronics, Telecommunications and Information					
		Technology					
1.3	Department	Bases of Electronics					
1.4	Field of study	Electronics and Telecommunications Engineering					
1.5	Cycle of study	Bachelor of Science					
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer					
1.7	Form of education	Full time					
1.8	Subject code	TST-E104.00					

2. Data about the subject

2.1	Subject name			FP	FPGA systems						
2.2	Subject area			Ele	Electronics and Communications Engineering						
2.3	Course responsible/lecturer			Ass	Assoc. Prof. Albert Fazakas						
2.4	2.4 Teachers in charge of applications			Ass	Assoc. Prof. Albert Fazakas						
2.5	Year of study	IV	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DS/
											FAC

3. Estimated total time

Year/ Sem	· · · , · · · · ·	No. of	Course Applications		Cours Applications Indiv. study.			۲AL	edit				
		weeks.	[hours/week]		[hours/sem.]			6	Cre				
				S	L	Ρ		S	L	Р			_
IV/I	FPGA systems	14	2		2		28		28		48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum.	56	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Manu	ual, lecture material and notes, l	bibliog	raphy					12
Supplementary study in the library, online and in the field								12
Prep	aration for seminars/laboratory	works	, homew	ork, reports, portfo	olios	, essays		20
Tutoring								2
Exams and tests							2	
Other activities							-	
3.7	Total hours of individual study	'	48					

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Număr de credite	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Digital Integrated Circuits, Digital Systems.
4.2	Competențe	Analysis and Design of Digital Systems
		Computer Aided Design for electronic circuits

5. Requirements (where appropriate)

5.1	For the course	Cluj-Napoca, Amphitheatre using video-projector
5.2	For the applications	Cluj-Napoca, Laboratory equipped with a computer network and FPGA development boards

6. Specific competences

		Students will know and understand:
	e	 The main FPGA families and devices on the market
	at t ow)	- Aspects related to HDL (VHDL, Verilog,) coding for synthesizable and non-
	khc	synthesizable codes
	al e (- To interpret correctly synthesis and implementation reports in order to optimize timing
	stic sdg	and area occupied by the device
	Theoretical knowledge (what the student must know):	- The internal structures of CPLD and FPGA devices, including special integrated
a	The	components and their advantages
Competențe profesionale		 The FPGA and CPLD configuration and autoconfiguration methods
<u>.</u>	skills student is :	After completing the discipline, the students will be able to:
Je	ski ent	 Create complex digital projects using HDL description (VHDL, Verilog)
brd	nde	 Plan and hierarchize the digital projects for partitioning and design reuse
fe	;; st	- Create testbenches, test modules, interpret waveforms from simulation and
ten	Acquired (what the s able to do):	hardware debugging
be		- Use advanced integrated components from FPGA such as BRAM, SLR, Clock
Б		PLL/DCM/MMCME
Ũ		 Hardware design of development systems and FPGA- or CPLD-based applications After completing the discipline, the students will be able to:
		After completing the discipline, the students will be able to:
	abilities: of the able to	 Efficiently use the FPGA-specific development tools such as Xilinx ISE, Vivado Design Suite
	abil of the	 use specific equipment for efficiently test and debug digital systems, (digital
	Acquired abilit (what type of equipment the student is able t	oscilloscope, logic analyzer)
	Acquired (what type equipment is a student is a	 use FPGA- and CPLD-based development boards
	cqu thai ude	 debug digital circuits on the hardware
	st e Ç Ā	
		N.A.
	nd CIS	
	Cross competences (Grila1 and Grila2 RNCIS)	
	cross ipeten irila1 a a2 RN	
	бŌ	

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing competences in the analysis, design, simulation and debug of FPGA-based systems and complex digital systems
		1.Knowledge on the theoretical fundamentals of the analysis, modeling, design, debug or simulation of FPGA-based systems, using specific development software
7.2	Specific objectives	2. Developing skills and abilities needed for design, implementation and debug of FPGA-based and complex digital systems
		3.Developing methodologies and techniques for a systematic design that involves analytical analysis, simulation and practical experiments

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes				
1	Introduction to HDL design. Analysis of the HDL codes of the basic components						
2	HDL- based design: Syntax, data types, operators and structural elements. How an HDL code is interpreted by a simulator and by a synthesizer	, teachir					
3	RTL descriptions in HDL languages. Aspects of the combinational and sequential processes. Ways to avoid synthesis problems	ation	ard				
4	Digital systems design methodology. Verification methods: behavioral, post-translate and post-place-and route simulations.	esent	ckbo				
5	State machine types. State machine description methods. Ways to avoid hazards and increase the speed.	evalu	or, bla				
6	FPGA structures. Differences from the PLA/PAL/GAL structures. Comparison between CPLD and FPGA. Base components used in FPGA structures: LUT. FF.SRL. Routing resources	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	.ppt presentation, projector, blackboard				
7	Xilinx FPGA families. Evolution of the families. Families of other producers (Altera, Lattice etc).	Presentation, plification, pro study, forma	ation,				
8	Configuration methods for FPGA devices. Powering and power sequencing of FPGA devices.	Pre emplif ise sti	esent				
9	FPGA specific integrated components: DRAM, BRAM, IOB, Clock DLL/DCM/PLL/MMCME.	n, ex(se, ca	opt pr				
10	The synthesis procedure. Component inference. Interpreting the synthesis reports.	ersation, e exercise,	Use of .p				
11	Aspects related to timing. Timing constraints.	e	Use				
12	Generating clock signals. Clock domains. Cross-clock domain synchronization.	c col					
13	Implementation of digital projects in FPGA devices. Place and route procedures and strategies. Methods for eliminating errors.	euristi					
14	Advanced integrated components in the FPGA devices: Serdes, XADC, DDR2/ DDR3 and MAC controllers.	he					
8.2.	Applications (lab)	Teaching methods	Notes				
1	Introduction to the ISE and Vivado design environments for Xilinx- based FPGA devices						
2	Combinational circuit descriptions using HDL languages.	e, te	Ital				
3 4	HDL-based testbenches. Simulation using the design environments. Sequential circuit descriptions using HDL languages. Register,	ctic exercise, team	experimental etic board.				
	counter and memory description examples.	exe	c pe				
5	Synchronous and asynchronous interconnections between components. Synchronization circuit examples. Ways to avoid hazard	actic	, č				
	and metastability.	dida	naç				
6	FSM (Finite State Machine) design example.	of, c	enta te/r				
7	FSM examples for simple hardware interfaces: UART, SPI, EPP	l proc work	i h				
8	Using LUT, BRAM, SRL16, DLL/DCM/PLL/MMCME components in	al p K	stru s, v				
0	FPGA devices. Device instantiation examples.	enta	ter in				
9	Importing and using pre-defied IP cores using Core Generator.	ime	ory				
10	Hardware debug of digital projects. Basic elements of using Hardware Manager and Chipscope.	Didactic and experimental proof, dida work	Use of laboratory instrumentation, boards, computers, white/magr				
11	Examples for using controllers for SRAM and FLASH components.	ě	abo Is,				
12	Timing analysis and timing constraints examples.	and	of I				
13	FPGA configuration examples. How to create and program the	tice	bo				
	external FLASH memories for autoconfiguration.	act	ň				
14	Design planning by manual place and route constraints. Using constraints wizards.	Did					
Bibl	iography						
1. R	ichard E. Haskell & Darrin M. Hanna "Digital Design using Digilent FPGA	Boards", 2nd	l Edition,				
	Books, 2012						
2. Steve Kilts, "Advanced FPGA Design", John Wiley and Sons, , John Wiley and Sons, 2007							

3. Albert Fazakas, Sisteme cu FPGA, notițe de curs

4. S. Hintea - Tehnologii de proiectare cu arii logice programabile, Editura UTPress, 2002 Electronic material:

- 1. Albert Fazakas, Sisteme cu FPGA, lucrări de laborator, http://www.bel.utcluj.ro/sfpga
- 2. Albert Fazakas, Sisteme cu FPGA, prezentări curs PowerPoint, http://www.bel.utcluj.ro/sfpga

3. Xilinx.inc., Free Online FPGA Design Training, http://www.xilinx.com/training/free-videocourses.htm#FPGA

4. Xilinx Products Datasheets User Guides and Application Bulletins, www.xilinx.com

5. Digilent Nexys2, Nexys3, Atlys boards reference manuals, http://www.digilentinc.com

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

10. 🗆 Vu	aatio							
Activity type	10.1	Criterii de evaluare	10.2	Assessment methods	10.3	Weight in the final grade		
Course		The level of acquired theoretical knowledge and practical skills		- Summative evaluation written exam (theory and problems)		- E, max 10 pct 50%		
Applicatio ns		The level of acquired abilities		 Continuous formative evaluation practical lab test 		- L, max. 10 pct 50%		
10.4 Minimum standard of performance								
		$L \ge 5$ and $E \ge 5$ and	0.5E +	- 0.5L ≥ 5				

Date of filling in 12.02.2015

Course responsible Assoc. Prof. Albert Fazakas, PhD Teachers in charge of applications Assoc. Prof. Albert Fazakas, PhD

Date of approval in the department 12.02.2015

Head of department Prof. Sorin Hintea, PhD