

FACULTATEA de INGINERIE ELECTRICA

str. G. Baritiu nr. 26-28, 400027 Cluj-Napoca, România tel.: 40-(0)264-401228, fax: +40-264-592903, secretariat: tel./fax 40-(0)264-401229 e-mail: DecanatET@staff.utcluj.ro, SecretarET@staff.utcluj.ro; http://ie.utcluj.ro

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca			
1.2	Faculty	Electrical Engineering			
1.3	Department	Electrotechnics and Measurements			
1.4	Field of study	Electronics and Telecommunications Engineering			
1.5	Cycle of study	Bachelor of Science			
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer,			
	1 Togram of Study/Qualification	Applied Electronics/ Engineer			
1.7	Form of education	Full time			
1.8	Subject code	TST-E18.00, EA-E18.00			

2. Data about the subject

2.1	Subject name	Basics of Electrotechnics					
2.2	Subject area						
2.3	Course responsible/lecturer	Associate Prof. Dan Doru Micu, PhD eng. math.					
2.4	Teachers in charge of applications	Associate Prof. Dan Doru Micu, PhD eng. math.					
2.5	Year of study II 2.6 Semester 1	2.7 Assessment Exam 2.8 Subject category DID/DO					

3. Estimated total time

Year	Subject name	No.	Course	App	licatio	ons	Course	App	licati	ons	Indiv.		
/		of							study	\ - -	edits		
Sem.		weeks	[hou	ırs/w	eek]		[hours/sem.]			[- [-	Çie		
				S	L	Р		S	L	Р			
II / 1	Basics of Electrotechnics	14	2	2			28	28			48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Indivi	dual study			1				Hours
Manual, lecture material and notes, bibliography								15
Supp	Supplementary study in the library, online and in the field							
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios,	essays		12
Tutoring							3	
Exams and tests								3
Other	activities							0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Recognizing and understanding basic concepts specific to basics of electrotechnics; Developing skills and abilities for the analysis and synthesis of electromagnetic fields; Implementing relations and theorems for electromagnetic field computation

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Classrooms, Cluj-Napoca

6. Specific competences

	1	
	Theoretical knowledge (what the student must know):	After completing the discipline, the students will be able to solve real problems regarding: electrostatic field computation, implementation of Poisson's and Laplace's equations,. Induced currents computation, magnetic and time-varying field computation, wave propagation problems.
mpetences	Acquired skills (what the student is able to do):	 After completing the discipline, the students will be able to: analytically compute the electric and magnetic field for real applications in different coordinate systems solve real problems regarding static and time-varying magnetic fields compute the solutions of a wave equation in different fields and frequency domains solve problems regarding electric and magnetic couplings
Professional competences	Acquired abilities: (what type of equipment the student is able to handle)	After completing the discipline, the students will be able to use the methods for the analysis and synthesis of electromagnetic fields to implement/design/solve practical problems regarding inductive, conductive and capacitive couplings
	In accordance with Grila1 and Grila2 RNCIS	C1. To use the fundamental elements regarding electronic devices, circuits, systems, instrumentation and technology C6. To solve wide-band telecommunications networks' specific problems: propagation in various transmission media, high frequency circuits and equipment (microwaves and optical).
Cross	competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	The objective is to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of electric and electronic devices.
7.2	Specific objectives	 Recognizing and understanding basic concepts specific to electromagnetic field theory Developing skills and abilities necessary to solve electromagnetic interference problems Developing skills and abilities for the analysis and synthesis of electromagnetic fields

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1+2	Basics of Electrotechnics. Introduction; Field Parameters and SI Units; Electric Flux Density and Field Intensity; Magnetic Flux Density and Field Intensity; Current Density Vector Analysis and Coordinate Systems in Electromagnetics. Vectors and Scalars; Vector Components; Unit Vectors; Orthogonal Coordinate Systems; Cartesian Coordinate System; Circular Cylindrical Coordinate System; Spherical Coordinate System; Potential Gradient and Gradient of a Scalar Field; Divergence of a Vector Field; Curl of a Vector Field; Stokes Theorem		
3+4	Electrostatic Field. Coulomb's Law; Electric Field Intensity; Gauss' Law; Electric Field of Continuous Charge Distribution; Electric Field Due to an Infinite Sheet Charge; Electric Potential; Derivation of Electric Field; Line Integral of Irrotational Field; Potential Due to a Point Charge; Electric Dipole; Materials for Static Electric Field; Dielectric Polarization; Dielectric Material Characteristics; Dielectric Boundary; Conditions; Refraction of Electric Field at Dielectric Boundary; Electrostatic Energy	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	olackboard
5	Poisson's and Laplace's Equations. Derivation of Poisson's and Laplace's Equations; Uniqueness Theorem; Solutions of Laplace's Equation; One-Dimension Solution; Two-Dimension Solution; Solution of Laplace's Equation in Cylindrical Coordinates; Solutions of Poisson's Equation; Numerical Solution of Laplace's Equation	Presentation, em presentation, tea evaluation	Use of .ppt presentation, projector, blackboard
6+7	Electric Currents. Current and Current Density; Conductivity and Resistance; Power and Joule's Law; Continuity Equation; Current Density Boundary Conditions; Capacitance; Parallel Plate Capacitor; Determination of Resistance; Coaxial Capacitor. Spherical Capacitor; Parallel Plate Capacitor with Two Dielectric Slabs	Preser , problem pre evalu	ot presentatio
8+9	Static Magnetic Field. Magnetic Flux Density; Biot–Savart's Law; Magnetic Field of a Long Straight Conductor; Ampere's Circuital Law; Ampere's Circuital Law in a Long Straight Conductor; Infinite Sheet of Current; Curl of a Magnetic Field; Scalar and Vector Magnetic Potential; Magnetization; Magnetic Field Boundary Conditions; Magnetic Field of Two Media; Magnetic Circuit; Series Magnetic Circuit; Parallel Magnetic Circuit; Magnetic Circuit with Air Gap; Hysteresis Curve; Inductance and Mutual Inductance	ation, exemplification	Use of .pp
10+ 11+ 12	Time-Varying Fields. Faraday's Law; Motional Voltage; Maxwell's Equations; Conduction and Displacement Currents; Maxwell's Equation from Ampere's Law; Transformer; Time-Varying Potentials; Field of a Series Circuit; Time-Harmonic Fields Fields created by a source distribution: retarded potential Electromagnetic potentials; Lorentz gauge; Solution of the inhomogeneous wave equation for potential; Electromagnetic Fields from a bounded source distribution; Maxwell's symmetric equations; Theorem of uniqueness; Numerical differential model of	heuristic convers.	

	electromagnetic fields.		
13+	Uniform Plane Waves. Time-Domain Maxwell's Equations; Wave		
14	Equation in Time-Harmonic Fields; Solution of a Wave Equation in the		
14	Frequency Domain; Solution of a Wave Equation in the Time Domain;		
	Wave Propagation in Lossy Medium; Wave Propagation in Good		
	Conductors; Power Flow and Poynting Vector; Incident and Reflected		
	Waves; Uniform Wave Polarization		
	Basics of Antennas. Working Principles of Antennas; Potential		
	Functions for Antennas; Hertzian Dipole; Antenna Gain and Directivity;		
-	Long Dipole Antennas.	Tanahina	Natas
8.2.	Applications (lab)	Teaching methods	Notes
1+2	Applications of vector analysis in electromagnetics. Vector algebra	metrious	
	applications. Coordinate systems and transformations. Lamme		
	parameters. Del operator. Gradient of a scalar. Divergence of a vector		
	and Divergence theorem. Curl of a vector and Stokes theorem.		
	Laplacian of a scalar. Grad, Div, Curl in different coordinate systems		
	(cartesian, circular cylindrical, spherical)		
3+4	Electrostatic fields applications. Mutual capacitances of a screened		
5+4 +5	parallel-wire line. Charge density on a conducting cylinder in front of a		
' 3	conducting plane. Potential of concentric spheres. Potential of a charge		
	with radially dependent density. Concentric cylinders with given		
	potential. Method of images for conducting spheres. Rectangular		
	cylinder with given potential. Energy and force inside a partially filed		
	parallel plate capacitor. 2D problem with homogeneous boundary	\checkmark	p.
	conditions on different Cartesian coordinates. Method of images for	or x	oa
	dielectric half-spaces. Force on a ring charge inside a conducting	>	å S
	cylinder. Dielectric Cylinder with variable charge on it's surface.	аш	lac
	Potential and field of dipole layers. Sphere with given potential. Plane	te	, p
	with given potential in Free space. Charge on a plane between two	e,	tor
	dielectrics. Force on a point charge by the field of a ring charge in front	cis	ec
	of a conducting sphere. Boundary field of a parallel plate capacitor.	хег	ıroj
6+7	Stationary current distributions. Current radially impressed in a	Ö	, p
	conducting cylinder. Current distribution around a hollow sphere.	ctic	ior
	Current distribution inside a rectangular cylinder. Current distribution	дас	tat
	inside a circular cylinder. Current distribution around a conducting	di	en
	sphere.	actic proof, didactic exercise, team work	of .ppt presentation, projector, blackboard
	Magnetic field of a stationary currents. Magnetic field of a line	oro	t p
+10	conductors. Magnetic field of a current sheet. Energy and inductance of	ic p	dd
	conductors with circular symmetry. Shielding of the magnetic field of a	acti	-
	parallel wire line. Mutual inductance of plane conductor loops. Inductive	Dida	
44.4	coupling between conductor loops.		Use
	Quasi stationary fields-Eddy Currents. Current distribution in a layerd		_
2	cylinder. Rotating conductor loop. Impedance of a coaxial cable.		
	Induced current distribution in the conducting half space. Induced		
	current distribution by a moving conductor. Conducting cylinder		
	exposed to a rotating magnetic field. Induced current distribution in a		
	conducting cylinder. Electric circuit with massive conductors.		
	Magnetically coupled system of conductors. Induced current		
	distribution in a conducting slab. Power loss and energy balance inside		
<u> </u>	a conducting sphere exposed to a transient field of a conductor loop.		
13	Electromagnetic waves. Transient waves. Coaxial cable with		
	inhomogeneous dielectric. Linear antenna in front of a conducting		
<u> </u>	plane. Hertzian dipole along the x-axis.		
14	Brief review before final exam		
ln:hi:	ography		

Bibliography

- J.M. Jin, Theory and computation of electromagnetic fields, Ed. Wiley, IEEE Press, 2010.
- M.A. Salam, Electromagnetic field theories for engineering, Springer, 2014.

 M. Zahn, Electromagnetic Field Theory: A Problem Solving Approach, Krieger Publishing, 2003.
- F. Tomescu, Fundamentals of electrical engineering. Electromagnetic field, MatrixRom, 2012.
- M Sadiku, Numerical techniques in electromagnetics with Matlab, CRC Press, 2013.
- R. Stanislaw, Fundamental numerical methods for electrical engineering, Springer, 2012.

- Thomas Senior, Mathematical methods in electrical engineering, Central London Press, 2008.
- 8. Paul Lorrain, Electromagnetic Fields and Waves, W.H Freeman, New York, 2004.
- Edward Rothwell, Electromagnetics, CRC Press, California, 2001. 9.
- 10. G. Mrozynski, Electromagnetic field theory. A collection of problems, Springer, 2014.
- 11. Dan D. Micu, Metode numerice în studiul interferențelor electromagnetice, Ed. Mediamira, 2004.
- 12. Dan D. Micu, G. Christoforidis, L. Czumbil, Book Chapter: Artificial Intelligence Techniques applied in Electromagnetic Interference problems between HV Power Lines and Metallic Pipelines, in "Recurrent Neural Networks and Soft Computing", InTech. 2012.
- 13. Shang-Xu, Hu, Applied Numerical Computation Methods, Ed. ZJU, MIT USA, 2011.
- 14. Joseph Edminister, Schaum's easy outline of electromagnetics, McGraw, 2010.

On-line references

- 1. Dan D. Micu, Fundamentals of electrotechnics (course slides, problem examples, exam subjects), http://www.ethm.utclui.ro/dmicu
- http://ocw.mit.edu/resources/res-6-002-electromagnetic-field-theory-a-problem-solving-approachspring-2008/textbook-contents/
- http://nptel.ac.in/courses/117103065/
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the					
						final grade					
Course		The level of acquired		- Evaluation - written							
		theoretical knowledge		exam (theory) – 2		C=60%					
				hours							
Applications		The level of acquired abilities		- Continuous formative							
				evaluation		A=40%					
				Evaluation - written							
				exam (problems) – 1							
				hour							
10.4 Minimu	10.4 Minimum standard of performance										
		C≥5 a	C≥5 and A≥5								

Date of filling in Course responsible Teachers in charge of applications 10.02.2015 Associate Prof. Dan Doru Micu. Associate Prof. Dan Doru Micu. PhD eng. math.

Date of approval in the department 10.02.2015

Head of department Prof. Calin Munteanu, PhD eng.

PhD eng. math.