

SYLLABUS

1.1	Institution	The Technical University of Cluj-Napoca
12	Faculty	Electronics, Telecommunications and Information
1.2	Tacuity	Technology
1.3	Department	Communications
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study / Qualification	Telecommunications Technologies and Systems/
	Figram of study / Qualification	Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E42.00

1. Data about the program of study

2. Data about the subject

2.1	1 Subject name				Radio Communications						
2.2	2.2 Subject area				Electronics and Telecommunications Engineering						
2.3	Course responsible / lecturer				Professor Tudor PALADE, PhD						
2.4	Teachers in cl	narge	e of a	applications	;	Assistant Professor Andra PASTRAV					
2.5	Year of study		2.6	Semester	2	2.7	Assessment	Exam	2.8	Subject category	DS/DOB

3. Estimated total time

Year/	Subject name	No.	Course Applications		Course	Applications Indiv. study			LAL	dits			
Sem.		UI	[hours/ week]			[hours/ semester]				ē	Cre		
		WEEKS		S	L	Ρ		S	L	Ρ			0
III/2	Radio Communications	14	2		2	1	28		28	14	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3	
3.4	Total hours in the curriculum	70	3.5	of which, course	28	3.6	applications	42	
Individual study Hou									
Manual, lecture material and notes, bibliography 28									
Supp	lementary study in the library, or	nline a	nd in th	e field				5	
Prepa	aration for seminars/laboratory w	vorks,	homewo	ork, reports, portfo	lios,	essays	6	21	
Tutor	ing							2	
Exam	is and tests							3	
Other activities 1									
3.7	Total hours of individual study		60					•	

3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Passive Components, Electronic Devices and Circuits, Integrated Circuits, Signals Circuits and Systems
4.2	Competence	Relations and theorems for electric circuits, frequency response representation; operating principles for electronic devices: diode, operational amplifier, MOSFET and BJT transistors; use of electronic devices in electronic circuits; analysis methods for electronic circuits; voltage transfer characteristics; transfer function

5. Requirements (where appropriate)

5.1	For the course	Cluj-Napoca
5.2	For the applications	Cluj-Napoca

6. Specific competences

Professional competences	 C4. To design, implement and operate data, voice, video and multimedia services, based on the understanding and application of fundamental concepts from the field of communications and information transmission. C5. To select, install, configure and exploit fixed and mobile telecommunications equipment. To equip a site with common telecommunications networks. C6. To solve wide-band telecommunications networks' specific problems: propagation in various transmission media, high frequency circuits and equipment (microwaves and optical).
Cross competences	N / A

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing skills in the design, simulation and measurement of circuits and radio systems
7.2	Specific objectives	 Assimilation of theoretical knowledge for the design and simulation of radio circuits using advanced simulation programs (Microwave Office, Matlab, ADS, LabView etc.) Obtaining skills and abilities necessary for measuring and testing circuits and radio systems

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	The fundamentals of electronic communication.	с ()	. •
2	Wave propagation.	on, on, ase	t jector
3	Antennas and transmission lines.	, ati ation, c, c ive	
4	Amplitude modulation fundamentals.	ers atic ise	ppi oro ard
5	Amplitude modulator and demodulator circuits.	erc erc	h, F boî
6	Fundamentals of frequency modulation.	co co ficer pli	e o ttiol
7	Frequency modulation circuits.	and	Us nta bla
8	Digital communication techniques.	- rris shir str	sei
9	Multiplexing and demultiplexing, transmission of binary data in	het prc ead	ore
	communication systems.	t	<u> </u>

10	Radio transmitters.		
11	Communication receivers.		
12	Satellite communication.	_	
13	Wireless technologies.		
14	Communication tests and measurements.		N 1 /
8.2. A	pplications (lab)	l eaching methods	Notes
1	Safety, presentation and laboratory works		
2	L1. The transmitter.	<u>.0</u>	
3	L2. Receiver.	act	
4	L3. The PLL circuit.	did	ć
5	L4. Automatic gain control.	of,	ers.
6	L5. Amplitude Modulation	bro	oute
7	L6. Demodulation of amplitude modulated signals.	ta	d me
8	L7. Amplitude modulation BLD and BLU	lieu	, ac
9	L8. Demodulation MA - BLD.		rds r
10	L9. Demodulation MA - BLU.	× pe	iory oa
11	L10. Frequency modulation.	a de la	al b
12	L11. Demodulation frequency modulated.	, te	abc
13	L12. Encoder remote control.	ctic cise	l Ju Line
	Laboratory works recovery - according to the rules and programming	dad	se o
14	and finalization of laboratory activity	õ Õ	° õ
8.3. A	pplications (projects)	Teaching methods	Notes
1	P1 - physical models for MIMO channel		
2	P2 - channel models based on stochastic geometry	E	
3	P3 - analytical models based on the propagation channel	tea	ć
4	P4 - channel models based on correlations	oť,	s.
5	P5 – broadcasting radio channel modeling	bro	ator
6	P6 - modeling wideband MIMO channel	ta	nds
7	P7 - capacity of MU-MIMO and MIMO channel	lieu	sin
8	P8 - MIMO transmission algorithms - STBC	- international sector	are are
9	P9 - MIMO transmission algorithms - V, H, D BLAST	T ad	tor)
10	P10 - diversity techniques	qe	so
11	P11 – space diversity	an	ab(ers,
12	P12 - techniques for radiation lobe synthesis	Stic	of
13	P13 - estimation techniques for angles of arrival - DoA	la da l	se (
14	P14 - channel state estimation methods	ĕĕ	ວັ ວິ

Bibliography

- 1. Palade, T, s.a Radiocomunicatii laborator, Ed. Mediamira, '99, Cluj, ISBN 973-97791-2-3
- 2. Palade, T., s.a. Radiocomunicatii probleme, Ed. Mediamira, '99, Cluj, ISBN 973-97790-9-3.
- 3. Walke, B.H. Mobile radio networks Wiley&Sons, 2002, ISBN 0-471-97595-8.
- 4. Young, P.H.-Electronic Communication Techniques, Prentice Hall, 2003, ISBN 0-02-431201-0.
- 5. Karlson, B., s.a. Wireless Foresight, Wiley&Sons, 2003, ISBN 0-471-85815-X.
- 6. Haykin, S. Communication Systems, Wiley&Sons, 4th Edition, 2004, ISBN 0-471-17869-1.
- Coleman, C.– An introduction to radio frequency engineering, Cambridge Univ. Press, 2005, ISBN 0-521-83481-3.
- 8. Hagen, J.B. Radio-Frequency Electronics, Circuits and Applications, Cambridge University Press, 2009, ISBN 978-0-521-88974-2.
- 9. Ziemer, R.E., Tranter, W.H. Principles of Communications Systems, Modulation and Noise, John Wiley & Sons, 2010, ISBN 978-0-470-39878-4.
- 10. Palade, T., s.a. Radiocomunicatii Indrumator de laborator Vol I, U.T.Press, Cluj-Napoca 2012, ISBN 978-973-662-684-5.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course		The level of acquired theoretical knowledge and practical skills		Summative evaluation written exam - theory topics and problems		50%	
Applications		The level of acquired abilities		Continuous formative evaluation and practical laboratory test		50%	
10.4 Minimur	n stan	dard of performance					
Answer correctly at least one subject of theory, writing appropriate design relationships needed to solve the problem and obtain at least the mark 5 for laboratory activities							

Date of filling in Course responsible 01.10.2014 Professor Tudor PALADE, PhD Teachers in charge of applications Assistant Professor Andra PASTRAV

Date of approval in the department 01.10.2014 Head of Communications Department Professor Virgil DOBROTA, PhD