UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Mathematics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/				
	Frogram or study/Qualification	Engineer, Applied Electronics/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	TST-E02.00, EA-E02.00				

2. Data about the subject

2.1	Subject name				Linear Algebra and Analytical and Differential Geometry						
2.2	.2 Subject area				Mathematics						
2.3	Course responsible/lecturer				Prof. Ioan Radu Peter						
2.4	2.4 Teachers in charge of applications				Prof. Ioan Radu Peter						
2.5	Year of study		2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DF/DI

3. Estimated total time

Year	Subject name	No.	Course	App	licatio	ons	Course	App	licati	ons	Indiv.		
/		of									study	Y	dits
Sem.		weeks	[hours/week]		[hours/sem.]			[O	Credits				
				S	L	Р		S	L	Р)
II / 1	Linear Algebra	14	2		2		28		28		39	125	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28	
Individual study									
Manual, lecture material and notes, bibliography									
Supplementary study in the library, online and in the field									
Prepa	ration for seminars/laboratory v	vorks,	homewo	ork, reports, portfo	lios,	essays		28	
Tutoring								3	
Exams and tests									
Other activities									

3.7	Total hours of individual study	69
3.8	Total hours per semester	125
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basics of linear algebra and analytic geometry (Romanian high
		school level, specialization mathematics and informatics)
4.2	Competence	Competence related to subjects above

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca				
5.2	For the applications	Cluj-Napoca				

6. Specific competences

	Theoretical knowledge (what the student must know):	Descriptions and recognition of some specific concepts of analytic geometry, vectors operations, their meaning. Descriptions and recognition of some specific concepts of linear algebra, their meaning and problem solving skills. Descriptions and recognition of some specific concepts of some simple aplications in pattern recognition, machine learning folosind metode algebrice
Professional competences	Acquired skills (what the student is able to do):	- Uses of theoretical aspects in problem solving.
Profession	Acquired abilities: (what type of equipment the student is able to handle)	The student can operate and understand some topics in analytical geometry and linear algebra. He is prepared for understanding basics in pattern recognition, machine leraning and primary notions in computer vision.
	In accordance with Grila1 and Grila2 RNCIS	C1. To use the fundamental elements regarding electronic devices, circuits, systems, instrumentation and technology C2. To apply basic methods for signal acquisition and processing C3. To apply knowledge, concepts and basic methods regarding computing systems' architecture, microprocessors, microcontrollers, programming languages and techniques
Cross	Competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Preparing the ability to use analytical geometry and linear
		algebra in some engineering fields.
7.2	Specific objectives	Using the matrix calculus (in the more general context of linear algebra and analytical geometry) to solve some specific problems in engineering.

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Linear spaces. Definition. Linear subspaces. Examples.		
2	Linear independence. Basis. Dimension. Change of basis.	em ′,	ard
3	Inner - product spaces. Definition, properties, Schwarz' inequality. Examples	probleı study,	pos
4	Linear transformations. Definition, elementary properties, Kernel and Image.	pr st	ack
5	The matrix associated to a linear transformation. The standard construction. Expressions in terms of coordinates.	ation, I case	or, bla
6	Eigenvalues and eigenvectors. Definitions, invariant subspaces, characteristic polynomials.	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	Use of .ppt presentation, projector, blackboard
7	The diagonal form. Canonical forms, diagonalizability.	atic xen exe val	٦, ص
8	The Jordan canonical form. Construction of a Jordan basis and a Jordan matrix.	Presentation ation, exemp aching exero native evalua	tation
9	Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix.	Pre ersation , teac	esent
10	The adjoint operator. Definition, properties, examples.	nve ion f	t pr
	Self-adjoint operators, unitary operators, properties of the eigenvalues and eigenvectors.	tic co entati	dd. J
12	Bilinear forms, quadratic forms. The associated matrix.	ıris Tes	О
	The canonical form. Reduction to a canonical form. The method of eigenvalues and Jacobi's method.	heu	Us
14	Conics and quadrics. Reduction to a canonical form. Geometric properties.		
	Applications (seminar)	Teaching methods	Notes
1	Determinants, matrices, geometric vectors		
2	Linear spaces, bases, dimension	acti	,
3	Inner-product spaces	Jida	tior ers,
4	Linear transformations. Examples	of, c	nta: oute d
5	Linear transformations characterized in terms of matrices	org ork	me omp
6	Invariant subspaces, eigenvalues, eigenvectors	al p	trui , α
7	Diagonalizable linear transformations	ent	ins Irds etic
8	Jordan bases, Jordan canonical forms	rim e, t	ory ၁၀a agn
9	Elementary functions of a matrix, examples	xpe cis 	orat tal I i/ma
10	The adjoint operator	Didactic and experimental proof, didactic exercise, team work	Use of laboratory instrumentation, experimental boards, computers, white/magnetic board
11	Special classes of operators	ane	of L erin wl
12	Bilinear forms, quadratic forms	ctic	хре
13	Reduction to a canonical form	idac	Č.
14	Conics and quadrics, reduction to a canonical form	Θ	

Bibliography

- Ioan Radu Peter, Laszlo Szilard Csaba, Adrian Viorel, Elements of Linear Algebra, , U.T. Press, Cluj-Napoca, 2014, ISBN 978-973-662-935-8, http://algappl.utcluj.ro/
- 2. S. Axler, Linear algebra done right, second edition, Springer, 1997
- 3. V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed. Mediamira, 2005
- 4. Gh. Sabac, Matematici speciale, E.D.P., Bucuresti, 1981
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the			
						final grade			
Course		The level of acquired		exam		T=30% of the			
		theoretical knowledge and				pts			
		practical skills							
Applications		The level of acquired abilities		exam		P=			
						70% of pts			
10.4 Minimum standard of performance									
	0.3T+0.7Pr								

Date of filling in 1.10.2018

Course responsible Prof. Ioan Radu PETER, PhD

Teachers in charge of applications Prof. Ioan Radu PETER, PhD