

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
		Technology
1.3	Department	Applied Electronics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/
	1 rogram or stady/ addimodion	Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E103.00

2. Data about the subject

2.1	Subject name					Virtu	ıal Instrumenta	tion			
2.2	2.2 Subject area			Supervisory Control and Data Acquisition							
2.3	Course responsible/lecturer			Assoc. Prof. Gabriel Chindris, Ph.D							
2.4	4 Teachers in charge of applications			Assistant Prof. Rajmond Jano, Ph.D							
2.5	Year of study	Ш	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DS/ FAC

3. Estimated total time

Year/	Subject name	No.	Course	App	licatio	ons	Course	App	licati	ons	Indiv.		
Sem.		of									study	-AL	edits
		weeks	[hours/week]			[hours/sem.]				707	Cre		
				S	L	Р		S	L	Р		_	
III / 1	Virtual Instrumentation	14	2		2		28		28		48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Individual study								
Manual, lecture material and notes, bibliography								20
Supp	lementary study in the library, o	nline a	nd in th	e field				-
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios,	essays	;	22
Tutoring								3
Exams and tests								3
Other activities								0

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Fundamentals of data acquisition systems, A?D and D/A
		conversion systems, microcontroller/microprocessor systems
		and programming fundamentals.

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca			
5.2	For the applications	Laboratory, Cluj-Napoca			

6. Specific competences

	Theoretical knowledge (what the student must know):	Open/closed loop control systems, P-PI-PID control systems, signal conditioning and biasing of industrial sensors/transducers, LADDER diagrams, state-machine diagrams, data-flow programming, industrial network design, fundamentals of designing SCADA microsystems, implementing safety procedures in industrial control.
mpetences	Acquired skills (what the student is able to do):	After completing the discipline, the students will be able to: - design a closed loop control system; - design a biasing/signal conditioning circuitry for thermocouples, thermisors, RTD and IC sensors; - design a closed loop control system for DC, BLDC and ACservo motors; - design safety circuits/procedures for industrial control; - design SCADA microsystems;
Professional competences	Acquired abilities: (what type of equipment the student is able to handle)	After completing the discipline, the students will be able to: - use the lab instrumentation (data acquisition systems, real-time systems, cRIO, PXI and LabVIEW); - advanced use of LabVIEW; - design SCADA application in LabVIEW; - acquire, analyze and present experimental data; - store and analyze the numerical data obtained through experiments;
	In accordance with Grila1 and Grila2 RNCIS	C2. To apply basic methods for signal acquisition and processing C3. To apply knowledge, concepts and basic methods regarding computing systems' architecture, microprocessors, microcontrollers, programming languages and techniques
Cross	Competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences in Virtual Instrumentation.
7.2	Specific objectives	 Recognizing and understanding basic concepts specific to SCADA. Developing skills and abilities necessary for the use of SCADA. Developing skills and abilities for acquire, analyze and present experimental data.

8. Content

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Course description. SCADA and Virtual Instrumentation.		
2	Open loop control systems, closed loop control systems.	uo	<u>~</u>
3	P-PI-PID control systems.	cati ng ve	cto
4	SCADA: architectures.	olific chi nati	oje
5	Industrial sensors and transducers for temperature.	mp tea	p
6	Signal conditioning for temperature measurements: evaluation of performance and error.	Presentation, ristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	.ppt presentation, projector, blackboard
7	Actuators and DC/AC motors control.	inta tior nta stu	ent ¿bc
8	Advanced A/D techniques: dithering and interpolation. Sources of error in A/D systems.	Presentation, heuristic conversation, exe problem presentation, exercise, case study, fevaluation	presentatio blackboard
9	Embedded SCADA architectures.	on m p	ppt
10	Real-time programming techniques for SCADA.	c c ble rci	
11	Network distributed computing for industrial control.	isti orol exe	Use of
12	SCADA software design. Safety in SCADA.	eur	Ωs
13	SCADA applications review.	حَ	
14	Recapitulation. Preparation for the final exam.		
	Applications (lab)	Teaching methods	Notes
1	Introduction. Safety measures in SCADA lab.		
2	LabVIEW intro.	of,	ion irs,
3	LabVIEW loops.	oro ork	itat ute
4	LabVIEW data types.	al r	ner dr. ard
5	I/O and files in LabVIEW.	ent	11 OS G
6	Data acquisition in LabVIEW.	ime , te	nstr Is, Iic l
7	Lab test 1.	per	y ir arc nel
8	Acquire, analyze and present: LabVIEW.	ex	ifor bo
9	Matlab/ Simulink interfaces.	Didactic and experimental proof, didactic exercise, team work	Use of laboratory instrumentation, experimental boards, computers, white/magnetic board
10	Real-time and network distributed programming.	c a Xic	lab hit
11 12	Industrial networks and LabVIEW.	acti dac	of N
13	GUI design. Lab test 2	dida	e e c
14	Lab recovery and finalization of laboratory activity	Δ	e C
1. Ga Indu	ografie abriel Chindriș, Horia Hedeșiu - Proiectarea Grafica a Sistemelor de Con striale – Editura Mediamira, ISBN 978-973-713-242-0, 160p., Cluj-Napoc * - LabVIEW User Guide	trol Pentru Aplic a, 2009	atii

Materiale didactice virtuale

1. *** - LabVIEW Lessons for intermediate users.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the
						final grade
Course		The level of acquired		 Summative evaluation 		- E, max 10 pct

	theoretical knowledge and	written exam (theory)	40%					
	practical skills							
Applications	The level of acquired abilities	- Continuous formative	-T1, T2, max.					
		evaluation	10 pct					
		- practical lab tests T1	60%					
		and T2;						
10.4 Minimu	10.4 Minimum standard of performance							
	T1,T2 ≥ 5 și E ≥ 5 și 0,4E+0,3T1+0,3T2 ≥ 4.5							

Date of filling in 1.10.2018

Course responsible Assoc. Prof. Gabriel Chindris,

PhD

Teachers in charge of applications Assistant Prof. Rajmond Jano, PhD