

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Electronics, Telecommunications and Information				
	1 activy	Technology				
1.3	Department	Bases of Electronics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/ Engineer,				
	Frogram of study/Qualification	Applied Electronics/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	TST-E26.00, EA-E26.00				

2. Data about the subject

2.1	Subject name	Analog Integrated Circuits						
2.2	Subject area	Analog Circuit Design						
2.3	Course responsible/lecturer	Assistant Professor Gabor Csipkes, PhD						
2.4	Teachers in charge of applications	Assistant Professor Gabor Csipkes, PhD						
2.5	Year of study II 2.6 Semester 2	2.7 Assessment Exam 2.8 Subject category DD/DI						

3. Estimated total time

Year/	Subject name	No.	Course	App	licatio	ons	Course Ap		Applications		Indiv.		
Sem.		of						study	-AL	Credits			
		weeks	[hou	[hours/week]		[hours/sem.]				<u> </u>	Cree		
				S	L	Ρ		S	L	Ρ			
II / 2	Analog Integrated Circuits	14	2	1	1		28	14	14		44	100	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2		
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28		
Individual study Ho										
Manual, lecture material and notes, bibliography										
Supplementary study in the library, online and in the field								-		
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios,	essays	6	20		
Tutor	ing							2		
Exam	ns and tests							2		
Other activities										
3.7	Total hours of individual study		44							

5.7	Total Hours of Harviadal Study	44	1
3.8	Total hours per semester	100	
3.9	Number of credit points	4	

4. Pre-requisites (where appropriate)

4.1	Curriculum	Semiconductor physics. Spectral analysis of signals. Analysis of electronic circuits. Analysis and design of fundamental circuits with transistors. Time and frequency domain analysis of linear, time invariant systems.
4.2	Competence	Using personal computers and laboratory equipment (multimeters, oscilloscopes, etc), fundamental knowledge of computer aided design in electronics.

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Laboratory, Cluj-Napoca

6. Specific competences

	Theoretical knowledge (what the student must know):	Electronics devices and circuits. Computer aided design. Circuit analysis and synthesis methods. Signals, circuits and systems.
Professional competences	Acquired skills (what the student is able to do):	After attending the lectures the students should: - be familiar with the operation of the main integrated analog building blocks; - recognize the fundamental structures in complex analog circuitry; - know the performance indicators and parameters for each category of fundamental circuits; - create combinations of functional blocks in order to implement complex analog signal processing systems; - be capable of performance analysis on the designed; - be able to propose improvements based on the key performance indicators.
	Acquired abilities: (what type of equipment the student is able to handle)	After attending the lectures the students should be able to: - use analysis methods specific to each category of circuits; - use the simulator to verify tehoretical concepts; - save and anayze numerical data obtained through modelling and simulation; - determine the main circuit parameters from simulation data (gain, input/output resistance, bandwidth, slew-rate)
	In accordance with Grila1 and Acquired abilities: Grila2 RNCIS of equipment the able to handle)	 C1. To use the fundamental elements regarding electronic devices, circuits, systems, instrumentation and technology C2. To apply basic methods for signal acquisition and processing C4. To design, implement and operate data, voice, video and multimedia services, based on the understanding and application of fundamental concepts from the field of communications and information transmission.
Cross	competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

	. ,	
7.1	General objectives	Development of competences in the area of advanced analog circuit analysis and design
7.2	Specific objectives	 Ackquiring theoretical knowledge with emphasis on the internal structures and parameters of bipolar and CMOS operational amplifiers. Developing skills in design and analysis of operational amplifiers based on a given set of functional specifications.

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Integrated semiconductor devices. MOS and bipolar trasistors.		
2	Small signal device models and parameters. Biasing techniques.		
	Latch-up in CMOS technologies.		
3	Current sources and sinks. Advanced current source architecures.		
	Increasing the output resistance and decreasing the minimum	_	
	required bias voltage.	uo	-
4	Bipolar and CMOS current mirrors. Parameters. Methods to reduce	ati	arc
	gain errors.	g g	ĝ
5	Integrated voltage and current references. Sensitivity and temperature		- Yo
-	coefficient. Vth/R, Vbe/R, Widlar and PTAT references.	er er	pla
6	References with supply voltage and temperature compensation	- <u>ê</u> ⊕	Ľ.
-	(bootstrap, band gap)	ti su	ğ
7	Elementary bipolar and CMOS voltage amplifiers. Principles of	aciati	oje
[operation. Frequency response. Performance enhancements.	ers	p
8	Improved elementary amplifier structures. Asymmetrical, symmetrical	<u>⊇</u> .≦	Ĺ,
	and folded cascode amplifiers. Operating principles. Frequency	se, co	atic
	response.	ici ici	nta
9	Differential amplifiers. Fundamental configurations. Parameters.	rist xe	sse
Ŭ	Frequency response.	ation, heuristic conversation, exemplif teaching exercise, interactive learning	pre
10	Linearisation of the fundamental differential amplifier. Emitter – source	ے بے آب	ъ
	degeneration and the effect of negative feedback.	acton	ġ.
11	The fundamental opamp with Miller compensation. Principles of	Presentation, heuristic conversation, exemplification, teaching exercise, interactive learning	Use of .ppt presentation, projector, blackboard
	operation. Small signal model. Frequency response. Design algorithm	eu	e S
	based on a given set of specification.	es	Ű
12	The cascode and folded cascode opamps. Comparison with the Miller	ā -	
12	compensated opamp. Small signal models. Frequency responses.		
	The design algorithm.		
13	Transconductance amplifiers. Fundamental linear OTA arcitectures.		
	Applications.		
14	Stability of feedback amplifiers. Stability criteria based on the loop		
	gain. Stability indicators. Stability conditions for the amplifier on the		
	forward signal path.		
	Applications (seminar)	Teaching methods	Notes
0. <u>2</u> . 1	Current sources and sinks.	rouorinig mounouo	110100
2	Current mirrors.	Presentation and	
2 3	Voltage and current references.	problem solving,	
	Elementary and differential voltage amplifier stages.	learning through	
4 5	Dpamp internal sructures. Analysis.	cooperation, case	
		studies and	
6	Opamp design algorithms.	demonstrations	
7	Stability analysis of the opamps. Frequency compensation.	Teeshing weather de	Natas
	Applications (lab)	Teaching methods	
1	Transistors – biasing, characteristics, operating regions, setting the		Computer
L	operating point.	applications.	(specific
2 3	Design and analysis of electronic current sources.	Learning through	software
3	Current mirrors.		tools)
4	Voltage and current references.	error, discovery on	,,
5	Elementary voltage amplifier stages.		1

6	Differential amplifiers.	industrial level						
7	Miller compensated and folded cascode opamp architectures.	simulators and						
		CAD tools						
Bibliography								
1.	. D. Csipkes – Circuite Integrate Analogice. Circuite fundamentale – Casa Cartii de Stiinta, 2007;							

- L. Feştilă Circuite integrate analogice 1 Casa Cartii de Stiinta, 1997;
 L. Feştilă Circuite integrate analogice 2 Casa Cartii de Stiinta, 1997;
- 3. L. Feștilă Circuite integrate analogice 2 Casa Cartii de Stiinta, 1999;
- 4. P.E. Allen, D. Holberg CMOS Analog Circuit Design, Second Edition, Oxford Press, 2002;
- D. Csipkes, G. Csipkes Fundamental Analog Circuits. Practical Simulation Exercises UTPres, 2004;
- D. Csipkes, G. Csipkes Elemente constructive utilizate în proiectarea circuitelor analogice complexe – Casa Cartii de Stiinta, 2004;
- 7. L. Feştilă, D. Lupea Circuite integrate analogice Culegere de probleme, LITO UTCN, 1999;
- 8. L. Festila, D. Lupea Teste de CIA LITO UTCN 1998;
- 9. G. Csipkes, R. Groza fascicole cu lucrari de laborator, uz intern, reactualizate anual.

On-line references

- 10. http://www.bel.utcluj.ro/ci/rom/cia1.html
- 11. D. Csipkes, Circuite integrate analogice Seminar
- 12. G. Csipkes, R. Groza, Circuite integrate analogice Laboratory
- 13. D. Csipkes, G. Csipkes, R. Groza Grid Test

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the			
						final grade			
Curs		Problem solving		Written examination		80%			
Aplicatii		Practical simulation exercises		Practical test		20%			
10.4 Minimu	10.4 Minimum standard of performance								
	Evaluation 4,5 at exam , passed practical testing, final mark at least 5								

Date of filling in Control Con

Course responsible Assist.Prof. Gabor Csipkes, PhD Teachers in charge of applications Assist.Prof. Gabor Csipkes, PhD