UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
	acuity	Technology
1.3	Department	Bases of Electronics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems/Engineer,
	Frogram of study/Qualification	Applied Electronics/Engineer
1.7	Form of education	Full time
1.8	Subject code	TST-E32.00, EA-E32.00

2. Data about the subject

2.1	Subject name	Systems with Analog Integrated Circuits					
2.2	Subject area	Integrated Circuits					
2.3	Course responsible/lecturer	Assoc. Prof. Marius Neag, PhD					
2.4	Teachers in charge of applications	Assist.Prof. Raul Onet, PhD.					
2.5	Year of study III 2.6 Semester 1	2.7 Assessment Exam 2.8 Subject category DID/DOB					

3. Estimated total time

Year/	Subject name	No.	Course	App	lication	ons	Course	App	licati	ons	Indiv.		
Sem.		of							study	<u> </u>	dits		
		weeks	[hou	[hours/week]		[hours/sem.]			•	0	Credits		
				S	L	Р		S	L	Р		_	
III / 1	Systems with Analog Integrated Circuits	14	2	-	2	-	28	ı	28	-	74	130	5

			3.2	of which, course	2	3.3	applications	2
3.4 Tot	al hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Individual study								
Manual, lecture material and notes, bibliography								40
Suppleme	entary study in the library, or	iline a	nd in th	e field				-
Preparati	on for seminars/laboratory w	orks,	homewo	ork, reports, portfo	lios,	essays		28
Tutoring								3
Exams and tests								3
Other act	ivities							0

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Good understanding of the operation and parameters of main analog
		building blocks: amplifying stages with one- and two-transistors, the
		differential pair, current mirrors, voltage references;
		Working knowledge on the internal structure of general purpose OAs.

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Laboratory, Cluj-Napoca

6. Specific competences

		- Main non-idealities and the related parameters of general-purpose Operational Amplifiers
		(OAs); their effects on the performance of typical OA-based circuits and standard
	l de l	solutions to minimize and/or compensate them;
	stno	- Implementation solutions for standard linear and nonlinear applications with OAs:
	he	amplifiers, filters, precision rectifiers, peak detectors, signal comparators and generators;
	at t	methods for their systematic analysis.
	Theoretical knowledge (what the student must know):	- Principle of operation of current-mode active devices such as the Current-Feedback
		Operational Amplifier (CFB-OA and the linear transconductor (Gm-cell); their main
	ed	parameters and the standard models used for analyzing circuits based on them;
	Jwc	examples of linear and non-linear applications with these devices.
	호	- Principle of operation, main parameters and typical applications for specialized
	«): (∝	integrated circuits such as: instrument amplifiers, comparators, multipliers, signal
	reti	generators, timers, V-F and F-V converters
	Theoretical must know):	- Principle of operation and main parameters of Integer-N frequency synthesizers based
	T III	on Phase Locked Loop (PLL) circuits;
(0	9	After completing the discipline, the students will be able to:
Professional competences	le t	- Analyze the stability of closed-loop systems based on general-purpose OAs analytically
ten	ap	and through small-signal simulations; design networks for frequency compensation;
) dc	nt is	- Estimate the effects of main OA nonidealities over the performance of OA-based circuits
μö	l j g	and design circuits to minimize and/or compensate them;
a	str	- Analyze and design typical linear and nonlinear applications with OAs such as:
ion	the	amplifiers, filters, precision rectifiers, peak detectors, signal comparators and generators;
SSE	hat	- Analyze and design circuits based on current-mode devices such as the CFB-OA and the
rofe	<u>\$</u>	linear transconductor (Gm-cell);
	Ĭ	- Analyze applications based on, and design circuits with, specialized integrated circuits
	ls b	such as: instrument amplifiers, analog multipliers, comparators and signal generators;
	Acquired skills (what the student is able to do):	- Analyze and design Integer-N frequency synthesizers based on integrated PLL circuits.
		- Design and implement simple testbenches for the functional verification of analog
		systems through SPICE-based simulations and for estimating their parameters.
	of O	After completing the discipline, the students will be able to:
	pe o	- Use standard CAD tools that include SPICE-based simulators for the design and
	it ty	verification of analog circuits and systems
	wha nt is	- Use the standard lab instrumentation (power supplies, oscilloscope, function generator,
	s: (a ldel le)	multi-meter) for the experimental study of analog systems with OAs and specialized
	oilities: one stude	integrated circuits;
	abil the	- Design and build test setups for experimental validation and characterization of analog
	ed (circuits and systems;
	uire	- Perform methodically circuit simulations and laboratory experiments in order to obtain
	Acquired abilities: (what type of equipment the student is able to handle)	accurate data, then process and analyze them

	with la2	C1. To use the fundamental elements regarding electronic devices, circuits, systems, instrumentation and technology
	Gri S	C2. To apply basic methods for signal acquisition and processing C4. To design, implement and operate data, voice, video and multimedia services, based
	In accordance with Grila1 and Grila2 RNCIS	on the understanding and application of fundamental concepts from the field of communications and information transmission. C5. To select, install, configure and exploit fixed and mobile telecommunications equipment. To equip a site with common telecommunications networks.
Cross competences (Grila1 and Grila2 RNCIS)		N.A.

7. Discipline objectives (as results from the key competences gained)

		, , , , , , , , , , , , , , , , , , , ,
7.1	General objectives	Develop students' competences on the analysis and design of analog systems implemented with general-purpose operational amplifiers (OAs) and specialised integrated circuits (ICs).
7.2	Specific objectives	 Understand the operation and main limitations of voltage-and current-mode OAs and their effect on OA-based circuits; Understand the operation of, and be able to recognize the standard implementations of OA-based basic analog signal processing blocks; Develop the skills and abilities the students need to analyse and design OA-based circuits for analog signal processing. Understand the operation and parameters of specialized analog ICs; develop skills and abilities required for analyzing circuits based on them and develop new applications with them.

8. Contents

8 1	Lecture (syllabus)	Teaching	Notes
0.1.	Ecolare (Syllabus)	methods	110100
1	Overview: objectives, content, methodology. Stability of closed-loop systems based on general-purpose OAs. Methods for internal and external frequency compensation of OAs.	Ĕ,	
2	Static and dynamic OA limitations; main parameters of OAs.	atio	
3	Noise in analog circuits: types of electrical noise, modeling and analysis methods. Noise models for passive and active devices.	problem presentation, native evaluation	ard
	Effects of OA nonidealities in linear applications with OAs; methods for minimising and compensating for these effects	em pr e evali	lackbo
4	Current-Mode active devices - the Current-Feedback Operational Amplifier and the Transconductor (Gm cell): operation; internal structure; modeling; parameters; main applications; comparison with traditional (voltage-mode) OA.		ppt presentation, projector, blackboard
5	Controlled-gain amplifiers implemented with voltage- and current-mode active devices	Presentation, exemplification, case study, forr	ion, p
6	Precision and instrumentation amplifiers: features, parameters; classical implementation solutions in voltage-mode.	Prese exemp case	entat
7	Current-mode instrumentation amplifiers: main principles and features of current-mode circuits; examples of current-mode implementation of instrumentation amplifiers; comparison with voltage-mode amplifiers.		ppt pres
8	Continuous-time filters: main topologies and synthesis methods; implementation of 1 st and 2 nd order sections with voltage- and current-mode active devices	heuristic conversation, teaching exercise	Use of .
9	Circuits with non-linear transfer characteristics: precision rectifiers; peak detectors; sample-and-hold amplifiers.	uristic	
10	Integrated voltage comparators: internal structures; main parameters and limitations. Applications: summing and differential comparators; window comparators; Schmitt triggers.	he	

11	Signal generators: main features and implementation techniques. OA-based generators: sine-wave; triangular & rectangular - wave; saw-		
12	tooth wave generators. Analog Multipliers - main features and implementation techniques: controlled MOS resistor; PWM; log/antilog; variable transconductance. Examples of and applications with integrated analog multipliers.		
13	Integrated circuits able to implement complex analog functions: timers, V-F and F-V converters.		
14	PLL circuits – fundamentals: basic architecture and principle of operation; modeling and analysis; main parameters, implementation examples and applications		
8.2.	Applications (lab)	Teaching methods	Notes
1	Stability analysis of OA-based feedback circuits. Methods for internal and external frequency compensation of OAs.		
2	Limitations and parameters of general-purpose OAs: small-signal operation	~	ters,
3	Limitations and parameters of general-purpose OAs: DC errors and large-signal operation	n work	omput
4	Current-Feedback Operational Amplifiers and Transconductors: parameters and applications.	e, tear	rds, co
5	Controlled-gain amplifiers.	ercise	al boa
6	Voltage-mode Instrumentation Amplifiers.	tic ex	menta ard
7	Current-mode Instrumentation Amplifiers.	didac	xperii tic bo
8	First- and second-order continuous-time filters	roof,	ımentation, experimel white/magnetic board
9	Precision half- and full-wave rectifiers	intal p	ientat nite/m
10	Voltage comparators implemented with general-purpose OAs and with integrated comparators.	Didactic and experimental proof, didactic exercise, team work	Use of laboratory instrumentation, experimental boards, computers, white/magnetic board
11	Signal generators.	and e	rator
12	Analog Multipliers and applications	dactic	f labo
13	Integrated circuits with complex functions: timers, V-F and F-V converters.	Dic	Use o
14	Integer-N frequency synthesizer based on integrated PLL circuits		
D:L:	a gran hu		1

Bibliography

- 1. M. Neag, Sisteme cu Circuite Integrate Analogice, Mediamira, 2008
- 2. M. Neag, A. Fazakas, Circuite Integrate Analogice, Casa Cărții de Știință, 1999
- 3. L. Feştilă, S. Hintea, M. Neag, E. Gaura, N. Pop, "Circuite Integrate Analogice. Culegere de Probleme" Lito UTCN, Cluj Napoca, Lito UTCN, 1997
- P. R. Gray, R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley and Sons, 2001
- 5. S. Franco Design with Operational Amplifiers and Analog Integrated Circuits, McGraw-Hill, 1998, 2001, 2014
- 6. S. Franco Analog Circuit Design: Discrete & Integrated, McGraw-Hill, 2014
- 7. D. Johns, K. Martin Analog Integrated Circuit Design, John Wiley & Sons, 1997
- 8. B. Razavi Design of CMOS Analog Integrated Circuits, McGraw-Hill, 2001
- 9. K. Laker, W. Sansen Design of Analog Integrated Circuits and Systems, McGraw-Hill, 1994

On – line references

1. M. Neag, Systems with Analog IC - course site: http://www.bel.utcluj.ro/ci/eng/saic/index.html

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the
						final grade
Course		The level of acquired		- Homework (problem		- H, max 10 pts.
		theoretical knowledge and		solving)		10%
		practical skills		- Summative evaluation		
				written exam (theory		- E, max 10 pts.
				and problems)		70%
Applications		The level of acquired abilities		 Continuous formative 		
				evaluation		- L, max. 10 pts.
				- practical lab test		20%
10.4 Minimum standard of performance						
L≥4.5 and E>5 and 0.7E+0.2L+0.1H≥5						

Date of filling in 1.10.2018

Course responsible Assoc. Prof. Marius Neag, PhD Teacher in charge of applications Assist.Prof. Raul Onet, PhD