

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Electronics, Telecommunications and Information Technology				
1.3	Department	Applied Electronics				
1.4	Field of study	Electronics and Telecommunications Engineering				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Technologies and Telecommunication Systems				
1.7	Form of education	Full time				
1.8	Subject code	TST-E46.20				

2. Data about the subject

2.1	Subject name	Applied Electronics				
2.2	Subject area	Electronics and Telecommunications Engineering				
2.3	Course responsible/lecturer	Assoc.Prof. Liviu Marin Viman, PhD				
2.4	Teachers in charge of applications	Assoc. Prof. Liviu Marin Viman, PhD				
2.5	Year of study IV 2.6 Semester 1	2.7 Assessment Verif. 2.8 Subject category DS/DOP				

3. Estimated total time

Year/ Sem.	Subject name	No. of	Course	Ар	plic	ations	Course	A	oplica	ations	Indiv. study	TAL	dits
		wee	[hours/week]		[hours/sem.]			6	Cre				
		ks		S	L	Р		S	L	Р			0
IV/I	Applied Electronics	14	2		2		28		28		48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4 Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28	
Individual study								
Manual, lecture material and notes	s, bibl	iogra	ohy				26	
Supplementary study in the library, online and in the field							4	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14	
Tutoring								
Exams and tests							2	
Other activities							-	
3.7 Total hours of individual stur	dv.	19						

0.7	Total Hours of Individual Study	40
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Spectral analysis of signals, sampling and quantization of signals. Analysis and design of circuits with transistors and operational amplifiers. Getting of boolean algebra. Analysis and some synthesis of combinational and some source the digital circuits.
4.2	Competence	Using the computers, the laboratory equipment (multimeter,
		oscilloscope, etc)

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Laboratory, Cluj-Napoca

6. Specific competences

	Theoretical knowledge (what the student must know):	 Spectral analysis of signals, sampling and quantization of signals. Analysis and design of circuits with transistors and operational amplifiers. Getting of boolean algebra. Analysis and synthesis of combinational and sequential digital circuits.
Professional competences	Acquired abilities: (what Acquired skills (what the type of equipment the student is able to do): student is able to handle)	 After completing the discipline, the students will be able to: understand how to represent the numbers in electronic systems, to recognize the most used codes, to apply the conversion algorithms of values between different codes; understand the significance of catalog parameters for DA and AD converters circuits; choose the type of circuit (operating principle) and the circuit (depending on the performance) suitable for a particular application; analyze, based on structure, the operation and performance of a data acquisition system; Develop the specification of the software program for data acquisition system; use the computer simulation programs and the laboratory instruments (virtual) (power supply, oscilloscope, logic analyzer, signal generator, multimeter) for troubleshooting and analysis of the data propagation in the data acquisition system; use the data sheets (print or online) in order to select the appropriate circuit to a required application.
	In accordance with Grila1 and Grila2 RNCIS	C2. To apply basic methods for signal acquisition and processing C3. To apply knowledge, concepts and basic methods regarding computing systems' architecture, microprocessors, microcontrollers, programming languages and techniques
	competences (Grila1 and Grila2 RNCIS)	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing skills in the field of analysis and the design of mixed analog-digital circuits and data acquisition systems.
7.2	Specific objectives	 Assimilation of theoretical knowledge regarding the structure and the performance of the A/D and D/A conversion circuits. Assimilation of theoretical knowledge on the functioning and performances of the support circuits for DAC and ADC. Obtaining the necessary skills to: develop, designing (and computer aided design) and analyze the data acquisition systems.

8. Contents

8.1	. Lecture (syllabus)	Teaching methods	Notes					
1	Introduction to DASF. Analog and digital quantities. Logical levels.	D						
2	DAC (Digital to Analog Converter): definitions, static and dynamic	<u>ו</u> ב ב	q					
2	parameters errors	tion	oar					
3	Weighted resistor networks R/2R resistor networks	lua te	kb					
1	Examples of intergrated DAC circuits: caracteristics, applications	on, val	acl					
5	ADC (Analog to Digital Converter): definitions, static and dynamic	e e e	a					
5	parameters errors	ific	tor					
6	Parallel ADC, Feedback ADC,	uo la m	jec					
7	Intermediate quantity ADC, Dual slope ADC.	for tati	pro					
8	Sigma-Delta ADC: caracteristics, applications,	é, en	, Ú					
9	Support circuits for DAC and ADC. Signal conditioning circuits.	on	Itio					
10	Principles of measurement of the temperature sensors. The design	e s ati	nta					
	of data acquisition systems for instrumentation	ers	ser					
11	Power supply design for the data acquisition systems.	, c	ore					
12	Software for the data acquisition systems. Testing the data	cc	pt I					
	acquisition systems.	atic	<u>d</u>					
13	Technology of the data acquisition systems. PCB designing. Terms	exe	of					
	of design for user interaction.	hei	se					
14	Recapitulation. Preparation for the final exam.							
8.2	Applications (lab.)	Teaching	Notes					
_		methods						
1	Signal sampling and re-building simulation.							
2	Binary representation of integers. Normalized values.		on, rs					
3	T1. Binary representation of integers.	, đ	atio					
4	DAC simulation.	Š X	npu					
5	T2. Identifying DAC parametres based on time wave shapes.	al p /orl						
6	ADC simulation.	n v tt	stru s, c					
7	T3. Identifying ADC parametres based on time wave shapes.	me	ard a					
8	The short circuit defect in the operation of logic circuits.	eri , te						
9	The defects generated by wrong logical impulse	exp	al h					
10	Defects in the signals on long lines	e d	ent e					
11	IFFF 1149 1 standard	an	ine ine					
12	IDDQ test method	tic sti	of Der					
13	T4 Test methods	lac	exp					
14	Lab recovery and finalization of laboratory activity	dic	<u> </u>					
Dih								
1.	1. IVI. Dabacarı – Data Acquisition Systems Fundamentals, Casa Carţii de Ştiinţa, ISBN 973-686-							
2	200-0, 290 pagini, Ciuj-Napoca, 2004.							
∠ .	Richard C. Doff – Modern Control Systems - ISBN 0-13-145733-0 (2005)							
2	Richard C. Doff – Modern Control Systems - ISBN 0-13-145733-0 (20 Robert Osbana, Mark Kraeling, Software Engineering for Embedded	Svetome Moth	ode					
3.	Richard C. Dorf – Modern Control Systems - ISBN 0-13-145733-0 (20 Robert Oshana, Mark Kraeling – Software Engineering for Embedded Practical Techniques and Applications, Electric ISBN 079-0-12-4450	Systems – Metho 17-4 2013	ods					
3. On	Richard C. Dorf – Modern Control Systems - ISBN 0-13-145733-0 (20 Robert Oshana, Mark Kraeling – Software Engineering for Embedded Practical Techniques and Applications, Elsevier, ISBN: 978-0-12-4159	917-4, 2013.	ods					

- 4. L. Viman. Applied Electronics (course slides, laboratories, problem examples, exam subjects)
- 5. M. Dăbâcan, L. Viman "Data Acquisition Systems Fundamentals Lab Themes ", UTCN, site: http://www.ael.utcluj.ro/ORGANIZARE/curs BSAD.HTML, 45 pagini, Cluj-Napoca, 2003.
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the	
				methods		final grade	
Course		The level of acquired		Summative		65%	
		theoretical knowledge and		evaluation written			
		practical skills		exams (E1 and			
				E2)			
Applications		The level of acquired abilities		practical lab test		35%	
				(T1, T2, T3 and			
				T4)			
10.4 Minimum standard of performance							
L≥5 (L=(T1+T2	<u>2+T3+</u>	Γ4)/4) and E1,E2≥4 and NF≥4.5 w	here N	IF=0.35*L +0.65*(E1	+E2)/2	2.	

Date of filling in 1.10.2018

Course responsible Assoc. Prof. Liviu Viman, PhD Teachers in charge of applications Assoc. Prof. Liviu Viman, PhD