

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca					
1.2	Fooulty	Electronics, Telecommunications and Information					
	Faculty	Technology					
1.3	1.3 Department Communications						
1.4	.4 Field of study Electronics and Telecommunications Engineering						
1.5	Cycle of study	Bachelor of Science					
1.6	Program of study/Qualification	Telecommunications Systems and Technologies,					
	Frogram of study/Qualification	Applied Electronics					
1.7	Form of education	Full time					
1.8	Subject code	TST-E48.20, EA-E48.20					

2. Data about the subject

2.1	Subject name					Digital Image Processing							
2.2	Subject area				Electronics and Telecommunications Engineering								
2.3	Course responsible/lecturer					Associate Professor Mihaela GORDAN, PhD							
2.4	2.4 Teachers in charge of applications				Ass	istant Profess	sor Came	elia F	LOREA, PhD				
2.5	Year of study	IV	2.6	Semester	1	2.7	Assessment	V	2.8	Subject category	DS/DOP		

3. Estimated total time

Year/	Subject name	No.	Course	App	licatio	ons	s Course Applications		ons	Indiv.			
Sem.		of		st		study	JAL	dits					
		weeks	[hou	[hours/ week]		[hours/ semester]					- E	Cre	
				S	L	Ρ		S	L	Ρ			0
IV/1	Digital Image Processing	14	2	0	1	1	28	0	14	14	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28	
Indivi	dual study							Hours	
Manual, lecture material and notes, bibliography									
Supp	lementary study in the library, o	nline a	nd in th	e field				4	
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios	essays	i.	14	
Tutor	ing							2	
Exams and tests									
Other activities									
37	Total hours of individual study		48					•	

3.7	Total Hours of Individual Study	40
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Linear Algebra; Signals Theory
4.2	Competence	NO

5. Requirements (where appropriate)

5.1	For the course	Technical University of Cluj-Napoca
5.2	For the applications	Technical University of Cluj-Napoca

6. Specific competences

Professional competences	 C4. To design, implement and operate data, voice, video and multimedia services, based on the understanding and application of fundamental concepts from the field of communications and information transmission. C5. To select, install, configure and exploit fixed and mobile telecommunications equipment. To equip a site with common telecommunications networks.
Cross competences	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing professional competences regarding the acquisition, processing, analysis and coding/compression of digital images, from the point of view of understanding the theoretical fundamentals and of their integration in practical interdisciplinary applications
7.2	Specific objectives	 Recognizing and understanding basic concepts specific to the acquisition, processing, coding/compression and analysis of digital images Understanding the similarities and differences between the representation, processing and coding of digital images (2-D signals) and 1-D signals Developing skills and abilities to generalize the theoretical concepts for signal processing and analysis and to apply them for the particular case of digital images and videos Developing skills and abilities to combine basic image processing, analysis and coding algorithms for practical applications specific to automation, robotics, medical imaging and industrial imaging systems Developing skills and abilities needed to implement and test the performance of digital image acquisition, processing and analysis systems

8. Contents

8.1.	Lecture (syllabus)		Tea met	chi ho	ng ds		N	ote	s
1	Course description. General notions regarding the processing, analysis								
	and coding/compression of digital images. Mathematical representation						the		
	of grey scale and color digital images.						Ē	the	
2	Image digitization. Image sampling/down-sampling: the sampling						Ň	te Te	
	theorem in the 2-D space, the Nyquist rates, the alias effect.							itra	
3	Image reconstruction from its samples / image up-sampling.				<u>></u>		d to	lus	
4	Other brightness quantization, general process, uniform quantization.				S		ij.	0 II	
4	Visual quantization				sci		act	ŋ, t	
5	Transform-based digital image representation. Unitary separable two-			-	a		Ę	Ĩ	σ
	dimensional image transforms. Properties and applications			-	lbr		dia	act	se
6	Two-dimensional unitary sinusoidal image transforms (DET_DCT) ⁻ two-				ē		ne	ŧ	Snc
Ŭ	dimensional unitary rectangular image transforms (Walsh, Haar).			-	5		ļĒ	ing	dise
	Applications of transform-based image representation: compression		Ë		ĥ		Ĕ	dur	s S
	and coding; image denoising; image analysis/object recognition.		atio		arn		of	ŝ	μų
7	Histogram statistics of digital images. Grey scale transformations for		ana	-	Ö		o	ole	orit
	image enhancement; contrast enhancement algorithms.		ĝ		Ű		lati	apl	alg
8	Spatial image filtering for image enhancement: low-pass spatial filtering		6	:	all		err	of	/sp
	and image denoising; unsharp masking; high-pass and band-pass		on		ers		alt	se	ĕ
	spatial filtering.		tati		Š		<u></u>	л 	Jetl
9	Other spatial image processing operations: contrast inversion;		en		8		sty	ē	≽ ຄ
	statistical scaling; image zooming. Transform domain image		res		Ś		b	00	Ę
	enhancement. Applications of image enhancement in communication		٦	-	Jat		-ili	teb	of
10	systems and medical imaging systems.			-	ge		eac	Ļ	lon
10	Digital image analysis: structure of an image analysis system; feature						ē	20	rat
11	Extraction; realure selection. Edge detection.			:			Sti	ğ	be
	their inner region. Contour extraction: contour descriptors. Region			-	stra		rac	d G	0
	extraction: region descriptors. Shape descriptors: shape-based object						nte	ij.	
	recognition Geometrical features: statistical moment features:				Ĕ		Ľ.	acl	
	regenerative features.			-	ö		g	fe	
12	Binary image morphology: erosion; dilation; other morphological						<u>ġ</u>	ica	
	operations. Median axis transforms; object skeleton; boundary thinning.						ġ-	SS	
13	Texture representation; texture descriptors. Digital image segmentation						eo	5	
	algorithms.						Ś		
14	Topics review and synthesis. Preparation for the final verification.		Too	chi	na	-	- NI	oto	
8.2. /	Applications (lab)		met	ho	ds			JIE	3
1	Introduction to IMAQ Vision. Structure of the image processing		đ)			_	.'	
	applications in LabView		D S	5			anc	ar	s
2	Video capture boards. Acquisition, rendering and storage of digital		Ē	, 2		Ś	ē	libr	arc
	images in LabView	ò.	eal /er	es :	ЧG	lter	val	Ы	pg g
3	The discrete Fourier transform; image filtering in the transform domain	ate	s; j	<u>cis</u>	no,]d	.€	'isi	lie
4	Image enhancement through grey scale transformations	gqe	ent disi	xel x	i th		õ	$\tilde{\alpha}$	ptu
5	Spatial filtering for image enhancement: noise removal (low pass	p o	ב פ	. 0	ng i	f a	ě	Ă	ç
_	spatial filtering); edge detection (nign pass spatial filtering).	dnc		<u> </u>	rui		Š	≧	ė,
0	Binary image morphology	Ū	t ex	stu	lea	n S	Lat	the	vid
14	rinal lab assessment, make-up misseu lab sessions.		Too	ohi	na		NL	oto	
8.2. /	Applications (project)		met	ho	ng ds		ING	Jie	5
1	Presentation of the projects topics. Presentation of the implementation								
	requirements general to all projects and particular to each topic. Work				se				
	plan specification. Discussion about the presentation of the results.	Ite;	لے		ъ З	, C			÷ 4
2	The study phase. Presentation of theoretical reports describing the	sba	ţi.		ic;	2	ľS,		ner
L	algorithms selected for implementation. Discussions and questions.	å	se;		hr	2	lte	Jre	pr
3	The design phase. Presentation of the block diagram of the application.	dnc	ser Ser	ate	orit 47.	- 0 0	npr	۲¥۵	ielc i
	Uscussions, questions, suggestions	Б Г	exe	det 2	alg	JS(NOC N	sof	de
4	in the implementation of the components of the application. Verification	-				-1-	-	•••	5,

	on test data. Presentation of the preliminary results. Discussion of the								
	encountered difficulties and finding ways to solve them								
5	5 Final application implementation phase – linking the components into								
	the end-user application. Functional verification of the application on								
	test data. Discussion of the encountered difficulties and finding ways to								
	solve them								
6	Generation of the set of test images and videos. Experiments to obtain								
	the results. Evaluation of the application performance and comparison								
	to the target results/state of the art. Editing the written documentation								
	of the project.								
7	Theoretical and practical presentation of the project. Evaluation/grading								
	of the project.								
Bit	bliography								
1.	A. Vlaicu, Prelucrarea numerică a imaginilor, Editura Albastră, Clui-Napoca, 1997, 393 pagini.								
	ISBN 973-9215-41-6								
2.	B. Orza, A. Vlaicu, C. Popa, M. Gordan, Viziunea computerizată în exemple și aplicatii practice.								
	Editura U.T.Pres, Clui-Napoca, 2007, 160 pagini, ISBN 978-973-662-294-6								
3.	M. Gordan. Sisteme de analiză a imaginilor digitale folosind clasificatoare masini cu vectori suport.								
•.	Ed Casa Cărtii de Stiintă Clui-Napoca 2006 ISBN 973-686-867-2								
4	Rafael C. Gonzalez Richard E. Woods, Digital Image Processing (3rd Edition) Prentice Hall 2008								
5	M Sonka V Hlavac R Boyle Image Processing Analysis and Machine Vision Thomson								
0.	earning 2007								
On	line teaching materials:								
1 4	Majou Prelucrarea numerică a imaginilor – prezentări curs (Powerpoint)								
httr	http://ctmtc.utclui.ro.8080/sites/pni/pni								
2.1	2 M Gordan A Vlaicu Prelucrarea imaginilor digitale – probleme rezolvate manuscris								
http	://ctmtc.utclui.ro:8080/sites/pni/pni								

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer; Security Systems Engineer) or in the new occupations proposed to be included in COR (Multimedia Applications Developer; Project Manager; Image and Sound Processing Engineer; Communications Systems Consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Discussion during the lectures on different problems		Continuous formative evaluation		C, max. 10 pts. 7.5%
		and their solutions. Two written tests, in the middle and in the end of the semester, consisting in a quiz part (with questions from theory and from exercises) with multiple possible correct answers, and an essay part, with three theoretical subjects and two practical problems to be solved.		Written verification		E, max 10 pts. 52.5%
Laboratory		The level of acquired abilities based on questions in the end of each lab session. Two laboratory reports, graded		Continuous formative evaluation Grades on two laboratory reports		L, max. 10 pts. 15%

Project	Presentation of the partial results in the form of written reports during the semester. The reports are graded. Presentation of the project (theoretical and practical) – implementation, results, comment on the results – also graded.	Continuous formative evaluation Grade on the final project, presentation and validation through experiments	P, max. 10 pts. 25%
10.4 Minimun	n standard of performance		
L ≥ 5 and E ≥ 4 and 0.75(0.7E+0.2L+0.1C) +0.25P≥ 4.5			

Date of filling in 01.10.2018

Course responsible Associate Professor Mihaela GORDAN, PhD Teachers in charge of applications Assistant Professor Camelia FLOREA, PhD