## UNIVERSITATEA TEHNICA

## UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației



## **SYLLABUS**

## 1. Data about the program of study

| 1.1 Institution                      | Technical University of Cluj-Napoca                        |
|--------------------------------------|------------------------------------------------------------|
| 1.2 Faculty                          | Faculty of Electronics, Telecommunications and Information |
| 1.2 Faculty                          | Technology                                                 |
| 1.3 Department                       | Mathematics                                                |
| 1.4 Field of study                   | Electronic Engineering, Telecommunications and Information |
| 1.4 Field of Study                   | Technologies                                               |
| 1.5 Cycle of study                   | Bachelor of Science                                        |
| 1.6 Program of study / Qualification | Telecommunications Technologies and Systems/ Engineer      |
| 1.0 Program of Study / Quamication   | Applied Electronics/Engineer                               |
| 1.7 Form of education                | Full time                                                  |
| 1.8 Subject code                     | TST-E12.00/EA-E12.00                                       |

## 2. Data about the subject

| 2.1 Subject name                       |                                 | Electro     | Electronic devices                        |                                           |                |   |                      |       |  |
|----------------------------------------|---------------------------------|-------------|-------------------------------------------|-------------------------------------------|----------------|---|----------------------|-------|--|
| 2.2 Subject area                       |                                 | Electro     | Electronic devices and circuits           |                                           |                |   |                      |       |  |
| 2.2.6                                  |                                 |             | As                                        | Assist.Prof. Laura-Nicoleta IVANCIU, Ph.D |                |   |                      |       |  |
| 2.3 Course responsible                 | 2.3 Course responsible/lecturer |             |                                           | laura.ivanciu@bel.utcluj.ro               |                |   |                      |       |  |
|                                        |                                 |             | Assist.Prof. Laura-Nicoleta IVANCIU, Ph.D |                                           |                |   |                      |       |  |
| 2 4 Topoboro in oborgo                 | 0.47                            |             |                                           | laura.ivanciu@bel.utcluj.ro               |                |   |                      |       |  |
| 2.4 Teachers in charge of applications |                                 |             | Assist.Prof. Emilia SIPOS, Ph.D           |                                           |                |   |                      |       |  |
|                                        |                                 |             | emilia.sipos@bel.utcluj.ro                |                                           |                |   |                      |       |  |
| 2.5 Year of study                      | 1                               | 2.6 Semeste | r                                         | 2                                         | 2.7 Assessment | Ε | 2.8 Subject category | DD/DI |  |

#### 3. Estimated total time

| 3.1 Number of hours per week                                                      | 4  | of which: 3.2 course | 2  | 3.3 seminar / laboratory | 2  |
|-----------------------------------------------------------------------------------|----|----------------------|----|--------------------------|----|
| 3.4 Total hours in the curriculum                                                 | 56 | of which: 3.5 course | 28 | 3.6 seminar / laboratory | 28 |
| Distribution of time                                                              |    |                      |    |                          |    |
| Manual, lecture material and notes, bibliography                                  |    |                      |    |                          | 23 |
| Supplementary study in the library, online specialized platforms and in the field |    |                      |    |                          |    |
| Preparation for seminars / laboratories, homework, reports, portfolios and essays |    |                      |    |                          |    |
| Tutoring                                                                          |    |                      |    |                          |    |
| Exams and tests                                                                   |    |                      |    |                          |    |
| Other activities:                                                                 |    |                      |    |                          |    |

| 3.7 Total hours of individual study | 69  |
|-------------------------------------|-----|
| 3.8 Total hours per semester        | 125 |
| 3.9 Number of credit points         | 5   |

## **4. Pre-requisites** (where appropriate)

| 4.1 Curriculum | Passive Components and Circuits, Physics                                                                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Electrical signals, connection of passive components, relations and theorems for electric circuits, time and frequency behavior of capacitors and inductors, frequency response representation. |



## UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației



## 5. Requirements (where appropriate)

| 5.1. For the course       | Amphitheater, Cluj-Napoca |
|---------------------------|---------------------------|
| 5.2. For the laboratories | Laboratory, Cluj-Napoca   |

## 6. Specific competences

| Professional<br>competences | C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C2. Applying the basic methods for the acquisition and processing of signals C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transversal                 | N/A equipment. Equipping a site with usual telecommunications networks                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## 7. Discipline objectives (as results from the key competences gained)

| 7.1 General objectives  | Developing the competences regarding the use of electronic devices.                                                             |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7.2 Specific objectives | Recognizing and understanding basic concepts specific to electronic devices.                                                    |  |  |  |
| 7.2 Specific objectives | <ol><li>Developing skills and abilities necessary for the use of electronic devices in<br/>simple electronic circuits</li></ol> |  |  |  |
|                         | 3. Developing skills and abilities for the analysis and (re)design of electronic circuits.                                      |  |  |  |

## 8. Contents

| <u> </u> | intents                                                                                                                                                                                         |                                     |                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|
| 8.1      | Lecture (syllabus)                                                                                                                                                                              | Teaching methods                    | Notes                      |
| 1.       | Presentation of course structure. Review: electrical signals, relations and theorems for electric circuits, RC circuits, frequency response representation                                      |                                     |                            |
| 2.       | Diodes. Models for switching diode. DR circuits.                                                                                                                                                |                                     |                            |
| 3.       | DR switching circuits. Switching DC circuits. Single-phase rectifiers with capacitive filter.                                                                                                   | Presentation,<br>euristic           |                            |
| 4.       | Full-wave DR rectifiers. DC swicthcing circuits. DRC rectifiers. LEDs.                                                                                                                          | conversation,                       |                            |
| 5.       | Zeener diodes. Operational amplifiers (OpAmps). OpAmp operation. Ideal OpAmp. Modes of use.                                                                                                     | exemplification, problem            | .Use of .ppt presentation, |
| 6.       | Simple op-amp comparators. Inverting and noninverting comparators. Voltage transfer characteristic. Waveforms.                                                                                  | presentation, teaching exercise,    | projector,<br>blackboard   |
| 7.       | Positive feedback OpAmp comparators. Inverting and noninverting comparators. Voltage transfer characteristic. Waveforms.                                                                        | case study,<br>formative evaluation |                            |
| 8.       | Electronic amplifiers: definition, power supply, voltage transfer characteristic, modeling, performance evaluation. Negative feedback op-amp amplifiers. Non-inverting and inverting amplifier. |                                     |                            |



#### UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației



| 9. Summing amplifiers. Differential amplifiers.                         |                     |                               |
|-------------------------------------------------------------------------|---------------------|-------------------------------|
| 10. Aplications with OpAmp: voltage domain conversion circuits,         |                     |                               |
| capacitively coupled amplifiers, amplifiers operated from a single      |                     |                               |
| power supply, integrators and differentiators.                          |                     |                               |
| 11. Transistors. Types. Operating principle and operating regions. Use  |                     |                               |
| in circuits. Transfer characteristics. BJTs: symbol, internal structure |                     |                               |
| 12. BJTs operating principle and equations, transistor characteristics, |                     |                               |
| operating regions, saturation. Switching MOS transistor: analog         |                     |                               |
| switch, CMOS inverter. Noise margins.                                   |                     |                               |
| 13. MOS transistors: symbol, physical structure, operating principle    |                     |                               |
| and equations, static characteristics, operating regions.               |                     |                               |
| 14. Recapitulation. Preparation for the final exam.                     |                     |                               |
| 8.2 Laboratory                                                          | Teaching methods    | Notes                         |
| 1. Introduction. Workplace safety.                                      |                     |                               |
| 2. Lab instrumentation. Voltage divider.                                |                     |                               |
| 3. Semiconductor diodes                                                 |                     |                               |
| 4. DR switching circuits, two-port and multi-port networks              |                     |                               |
| 5. DC switching two-port network                                        | Didactic and        | Use of laboratory             |
| 6. Single phase rectifiers with capacitive filter                       |                     |                               |
| 7. Circuits with Zener diodes and LEDs.                                 | experimental proof, | instrumentation, experimental |
| 8. Voltage comparator with op-amp - simple comparators                  | didactic exercise,  | boards,                       |
| 9. Optical indicator for voltage level with OpAmp                       | team work           | computers,                    |
| 10. Voltage comparator with op-amp - hysteresis comparators             |                     | smart board                   |
| 11. Basic amplifiers with OpAmp                                         |                     | Siliare Board                 |
| 12. Rail-to-rail OpAmp amplifier with unipolar supply                   |                     |                               |
| 13. Laboratory test                                                     |                     |                               |
| 14. Lab do-overs and finalization of lab activity                       |                     |                               |
|                                                                         |                     |                               |

#### **Bibliography**

#### On-line references

- 1. Ivanciu, Laura-Nicoleta. Electronic devices (course slides, laboratories, problem examples, exam subjects), http://www.bel.utcluj.ro/dce/didactic/ed/ed.htm
- 2. Sipos, Emilia, Ivanciu, Laura, Dispozitive Electronice. Probleme rezolvate, 2016

#### Offline references

- 3. Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, ISBN 973-662-220-7, 2006; 317 pag.
- 4. Oltean, G., Sipos, Emilia, Miron, C., Ivanciu, Laura, Laboratory Manual for Electronic Devices, Editura UTPRESS, Cluj Napoca, 2010, ISBN 978-973-662-542-8, 90 pag.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).



## UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației



#### 10. Evaluations

| Activity type     | 110.1 Assessment criteria      | 10.2 Assessment methods                                                                                     | 10.3 Weight in the final grade                    |
|-------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 10.4 Course       |                                | - 10 homework activities - optional (problem solving) - Summative evaluation written exam (problem solving) | - H, max 10<br>pts, 10%<br>- E, max 10<br>pts 70% |
| 10.5 Applications | The level of aquired abilities | - Continuous formative<br>evaluation<br>- Laboratory test (practical<br>evaluation)                         | - L, max. 10<br>pts, 30%                          |

### 10.6 Minimum standard of performance

## Qualitative level:

- 1. To recognize and understand basic concepts specific to electronic devices.
- 2. To develop skills and abilities necessary for the use of electronic devices in simple electronic circuits
- 3. To analyze and (re)design electronic circuits.

#### Quantitative level:

- 1. Full laboratory attendance
- 2. Final grade computed as:  $min(10, 0.7E+0.3L+0.1H) \ge 4.5$ , where  $L \ge 5$  and  $E \ge 4$ .

| Date of filling in: | Responsible  | Title Surname NAME                        | Signature |
|---------------------|--------------|-------------------------------------------|-----------|
| 29.09.2020          | Course       | Assist.Prof. Laura-Nicoleta IVANCIU, Ph.D |           |
|                     | Applications | Assist.Prof. Laura-Nicoleta IVANCIU, Ph.D |           |
|                     | 1            | Assist.Prof. Emilia SIPOS, Ph.D           |           |

| Date of approval in the Department of Communications 30.09.2020                                                           | Head of Communications Department Prof. Virgil DOBROTA, Ph.D. |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Date of approval in the Council of Faculty of Electronics,<br>Telecommunications and Information Technology<br>30.09.2020 | Dean<br>Prof. Gabriel OLTEAN, Ph.D.                           |