UNIVERSITATEA TEHNICA DIN CUMANAGA

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Materials and Environment Engineering
1.3 Department	Physics and Chemistry
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of Study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Telecommunications Technologies and Systems/ Engineer
1.6 Program of Study / Qualification	Applied Electronics/Engineer
1.7 Form of education	Full time
1.8 Subject code	TST-E03.00/EA-E03.00

2. Data about the subject

2.1 Subject name		Physic	s I					
2.2 Subject area		Theore Metho Analyt	dol	ogica				
2.3 Course responsib	le		Pro	of. Co	oriolan TIUSAN, Ph.D -	cor	iolan.tiusan@phys.utcluj.	ro
2.4 Teacher in charge	with	n seminar /	Pro	of. Co	oriolan TIUSAN, Ph.D -	cor	iolan.tiusan@phys.utcluj.	ro
laboratory / project			Fiz	. Rox	ana ONE, Ph.D.			
2.5 Year of study	I	2.6 Semeste	r	1	2.7 Assessment	Ε	2.8 Subject category	DF/DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	3.2 course	2	3.3 seminar / laboratory	2
3.4 To Total hours in the curriculum	56	of which:	3.5 course	28	3.6 seminar / laboratory	28
Distribution of time						hours
Manual, lecture material and notes, b	ibliogı	raphy				20
Supplementary study in the library, or	nline s	pecialized	platforms a	nd in the	e field	-
Preparation for seminars / laboratorie	s, hor	nework, re	ports, portf	olios and	d essays	18
Tutoring						3
Exams and tests						3
Other activities:						0

3.7 Total hours of individual study	44
3.8 Total hours per semester	100
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 curriculum	Basic background in Physics from High school
4.2 competence	Basic knowledge of Math from High school

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	The presence at the seminaries is compulsory.

6. Specific competences

	- Ferences
Professional competences	C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C2. Applying the basic methods for the acquisition and processing of signals C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications equipment. Equipping a site with usual telecommunications networks C6. Solving specific problems of the broadband communications networks: propagation in different environment, circuits and equipment for high frequencies (microwaves and optical).
Transversal competences	N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Developing the competences and knowledge related to Elementary Physics useful for Electronics and Applied Electronics.
7.2 Specific objectives	 Understanding and manipulation of basic concepts in Physics, combined with Math. Developing skills and abilities necessary for solving simple and complex problems of Physics. Developing skills and abilities for the analysis of fundamental phenomena in nature and technics which are transposed as problems in the Engineering domain.

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
Units, physical quantities and vectors The Nature of Physics. Solving Physics Problems. Physical Quantities. Standards and Units. Uncertainty, Significant Figures, Orders of magnitude. Scalar and Vector Physical Quantities. Operations with Vectors.	tation, ion, bblem ing exercise, ve evaluation,	Mainly use the blackboard, the projector used only for presentation of
Kinematics The Point Approach. Position Vector. Displacement Vector. Velocity and Acceleration Vectors. Motion Along a Stright Line. Free Falling Bodies. Motion in Two and Three Dimensions.Projectile Motion. Circular	Present heuristic conversati exemplification, pro presentation, teach case study, formati learning by discove	some movies with recorded experiments of physics.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Motion. Equations of Movement. x(t), v(t), a(t) Representations. Integral definitions: Calculations of Velocity and Equation of Movement by Integration.

Dynamics

NEWTON'S LAWS OF MOTION

Types of forces:Gravitational force (Universal Attraction Law), Friction Forces, Viscosity Forces. Fundamental Forces of Nature. Using Newton's Laws: Translational Equillibrium, Dynamics of Particles.

Dynamics.

Work, energy and conservation laws

Work. Kinetic Energy and the Work-Energy Theorem. Integral definitions. Power. Gravitational Potential Energy. Elastic Potential energy. Conservative and

Nonconservative Forces. Force and Potential Energy. Energy conservation.

Momentum, impulse and collisions

Momentum and Impulse. Internal and External Forces, Conservation of Momentum. Collisions. Center of Mass.

Kinematics and dynamics of rotational motion

Beyond the point approach: the rigid body.

Angular Velocity and Acceleration. Equations of Rotational

Movement. Energy. Moment of Inertia. Relating

Translational and Rotational Motion. Torque. Torque and Angular Acceleration. Work and Power.

Angular momentum. Theorem of Angular Momentum.

Conservation of angular momentum.

Equilibrium and elasticity

General Conditions of Equillibrium for the Rigid Body (translation+rotation). Center of Gravity. Stability Against Overturn.

Elements of elasticity

Beyond the Rigid Body Approach. Stress, Strain and Ellastic Moduli.

Tensile and Compression Stress and Strain. Bulk Stress and Strain. Shear Stress and Strain.

Elasticity and Plasticity

Periodic motion

Describing Oscillation.

Simple Harmonic Motion.

Equation of movement. Solution. Elements of SHM: amplitude, period, frequency, angular frequency, phase,...Energy in Simple Harmonic Motion. Applications of SHM (The Simple Pendulum, The Physicsl Pendulum). Damped Oscillations.

Equation of movement. Solution. Important Physical Quantities: logarithmic decrement of damping, relaxation time, Quality Factor.

Forced Oscillations and Resonance.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Equation of movement. Solution. Resonance, applications and consequences of resonance.		
Mechanical waves (I)	1	
Types of Mechanical Waves. Periodic Waves.		
Mathematical Description of a Wave. Speed of a		
Transverse Wave. Energy and Power in Wave Motion.		
Mechanical waves (II)	1	
Wave Interference, Boundary Conditions, and		
Superposition. Standing Waves in a String. Normal Modes		
of a String. Harmonic Analysis (Spectral Composition) of		
Complex Stationary Waves.		
Sound waves	1	
Speed of sound waves. Sound intensity. Standing Sound		
Waves and Normal Modes. Resonance and Sound.		
Interference of waves. Beats. The Doppler effect. Shock		
waves.		
Wave optics	1	
The principle of Fermat. Reflexion and refraction of sound		
waves. Diffraction of waves. The principle of Huygens-		
Fresnel. The sound wave attenuation. The reverberation of		
sound.		
Elements of ultrasounds and applications		
Definitions. The magnetostriction effect and the		
magnetostrictive generator. The inverse piezoelectric		
effects and the electrostrictive generator. Phenomena		
specific to ultrasound. Cavitation. Passive and active		
applications of ultrasounds.	4	
Elements of fluid mechanics		
Density and pressure in a fluid. Pressure in a fluid at rest.		
Pascal law. Applications. Buoyancy. Fluid flow. Continuity		
equation. Bernoulli equation. Viscosity and turbulence.	4	
Recapitulation. Preparation for the final exam.		
Bibliography		
1) H. D. Young, R. A. Freedman - Sears and Zemansky's Uni	iversity Physics with Modern P	hysics
Technology Update (lb. engleza), Pearson - 2013; in rom	•	•
2) D. Halliday, R. Resnik, Physics (vol. I, II), John Willey et s	ons in Romanian: Fizica, EDP B	ucuresti
(1975).		
 Berkeley Physics Course (5 vol), vol.I Mechanics (Ch. Kit HILL BOOK COMPANY. in Romanian: EDP Bucuresti, 198 		• •

4) E. Luca, Gh. Zet si altii ii – Fizică generală, Ed. Did. și Pedag., București.

On-line references

5. Tiusan Coriolan. *Elements of Physics* (course content, course an seminaries), https://spin.utcluj.ro/webphysics/Physics.html

8.2 Seminar / laboratory / project	Teaching methods	Notes
1/ Introduction.	, pu	of tic and for
2/ Vectors	br Ital actic on,	net
3/ Kinematics	c ar nen dida dida e, e, sati	magr ters ter ms nalys
4/ Force and Potential Energy	acti erir of, o rcis rcis ver erv	te/l Ird, Ird, Ipur Ipur gral
5/ Free falling of bodies. Projectile motion.	Dida exp pro exe con obs	Use whi boa corr corr prog

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

6/ Collisions
7/ Circular Movement. Gravitation
8/ Single Harmonic Oscillator
9/ Damped Oscillations. Electrical analogy: RLC oscilator
10/ Mechanical waves
11/ Sound Waves
12/ Sound intensity level and sound optics.
13/ Laboratory test
14/ Recapitulation. Preparation for the final exam.
P. P. P. A. A. A.

Bibliography

- 1. H. D. Young, R. A. Freedman Sears and Zemansky's University Physics with Modern Physics Technology Update (lb. engleza), Pearson 2013;
- 2. On-line references: Tiusan Coriolan. *Elements of Physics* (course content, course an seminaries), https://spin.utcluj.ro/webphysics/Physics.html

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills, logical coherence, skills of operating with acquired knowledge in individual complex activities.	Formative evaluation tests (sets of problems solving) -Summative evaluation written exam (theory and problems)	80%
10.5 Seminar/ Laboratory	The level of acquired theoretical knowledge and abilities for problems analysis and solving	- Continuous formative evaluation - seminary individual work	20%

10.6 Minimum standard of performance

Quality level:

Minimum knowledge:

- Knowledge of the basic principles of mechanism (statics, Newtonian dynamics)
- -Knowledge of main concepts and Physical quantities (force, work, energy, momentum, angular momentum)
- -Knowledge of basic conservation laws in Physics (energy, momentum, angular momentum)
- -Knowledge of main motion phenomena: linear an curved path motion, periodic motion/oscillation, mechanical waves

Minimum competences:

- Manipulate scalar and vector physical quantities.
- From second principle of dynamics solve a motion problem, derive the law of motion, calculate energies (kinetic, potential).

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

- Apply conservation laws in analysis of a physical phenomenon
- Be able to solve standard problems in Physics related to motion of objects.
- Succeed to make analysis of a real mechanical phenomenon and put it in a problem to be solved
- The exam and laboratory notes must be at least 5.
- -The mark for the subject is calculated with the relation: 0.8 * Exam score + 0.2 * Worker grade (seminary contribution)

Date of filling in:	Responsible	Title First name SURNAME	Signature
27.09.2021	Course	Prof. Coriolan TIUSAN, Ph.D	***************************************
	Applications	Fiz. Roxana ONE, Ph.D.	

Date of approval in the Department of Communications 27.09.2021	Head of Communications Department Prof. Virgil DOBROTA, Ph.D.
Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology 27.09.2021	Dean Prof. Gabriel OLTEAN, Ph.D.