

SYLLABUS

1. Data about the program of study

Technical University of Cluj-Napoca
Faculty of Electronics, Telecommunications, and Information
Technology
Communications
Electronic Engineering, Telecommunications, and Information
Technologies
Master of Science
Telecommunications / Master
Multimedia Technologies / Master
Artificial Intelligence and Signal Processing in Electronics and
Telecommunications / Master
Full time
TC-E16.20

2. Data about the subject

2.1 Subject name	-	Intellig	Intelligent Wireless Communications Systems					
Theore			eoretical area					
2.2 Subject area			Methodological area Analytic area					
2.3 Course responsible Professor Emanuel PUSCHITA, Emanuel.Puschita@com.utclu				luj.ro				
2.4 Teacher in charge with seminar / laboratory / project			Pr	ofess	or Emanuel PUSCHITA,	Em	anuel.Puschita@com.utc	luj.ro
2.5 Year of study	2	2.6 Semeste	er	3	2.7 Assessment	Ε	2.8 Subject category	DS/DO

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 course	2	3.3 laboratory	1
•	-			20		14
3.4 To Total hours in the curriculum	42	of which:	3.5 course	28	3.6 laboratory	14
Distribution of time					hours	
Manual, lecture material and notes, b	ibliogr	aphy				20
Supplementary study in the library, online specialized platforms and in the field					12	
Preparation for seminars / laboratories, homework, reports, portfolios and essays					20	
Tutoring					3	
Exams and tests					3	
Other activities:						
3.7 Total hours of individual study 58						
100						

3.8 Total hours per semester	100
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 curriculum	Cellular Radiocommunications, Radiocommunications, Fixed and mobile communications systems.
4.2 competence	N. A.

5. Requirements (where appropriate)

5.1. for the course	Technical University of Cluj-Napoca (video projector, screen, whiteboard, MS Office 365/MS Teams account for online
	activities)
	Technical University of Cluj-Napoca (PCs with internet access,
5.2. for the seminars / laboratories / projects	video projector, screen, dedicated software and hardware,
	MS Office 365/MS Teams account for online activities)

6. Specific competences

	 C4. Conception, implementation and operation of data, voice, video, multimedia services, based on the understanding and application of fundamental notions in the field of communications and information transmission. C4.3 Explanation and interpretation of the main requirements and specific approach techniques for data, voice, video, multimedia transmissions.
petences	 C5. Selection, installation, configuration and operation of fixed or mobile telecommunications equipment and equipping a site with the usual telecommunications networks. C5.2 Explanation and interpretation of fundamental technologies and protocols for
Professional competences	integrated fixed and mobile communication systems. C6. Solving specific problems for broadband communication networks: propagation in different transmission media, circuits and equipment for high frequencies (microwave and optical).
Profes	 C6.3 Solving practical problems using microwave circuit design methods, planning, coverage, selection and placement of transmission and reception equipment. C7. Understanding the principles and techniques of machine learning, deep learning,
	optimization C7.1 Design, implementation, testing and exploitation of neural networks.
	C7.2 Design, implementation, testing and exploitation of deep neural networks.C7.3 Design, implementation, testing and exploitation of convolutional neural networks.C7.4 Use of Matlab, Python environments for application development.
Cross competences	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	The development of professional skills in the field of current wireless communications systems.
7.2 Specific objectives	 Assimilation of theoretical knowledge regarding applications based on antenna arrays and SDR technology. Developing skills and competencies for programming SDR platforms.

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
1. Radio waves propagation: absorption, reflection, scattering, refraction, diffraction, attenuation, amplification.	Presentation, exemplification,	Use of .ppt presentations,

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicatți și Tehnologia Informației

2.	Propagation models. Basic communications systems. The	problem discussion,	video projector,
	radio channel.	case study.	blackboard.
3.	Antennas. Types: omnidirectional, directional, sector.		
	Antenna arrays.		
4.	MIMO systems. Spatial diversity. Spatial multiplexing.		
	MIMO channel model. MIMO channel capacity.		
	Introduction in space-time codes.		
5.	Massive MIMO systems. Massive MIMO channel model.		
	Case study. Future trends.		
6.	Beamforming: analog, digital, hybrid. Conventional		
-	beamforming.		
7.	Adaptive beamforming. Adaptive algorithms: Least		
	Mean Squares, Direct Sample Covariance Matrix		
	Inversion, Recursive Least Squares.		
8.	Error effects in digital beamforming.		
9.	Adaptive beamforming in mobile communications.		
_	Adaptive beamforming in indoor communications.		
10.	Narrowband beamforming. Wideband beamforming.		
_	MIMO beamforming.		
11.	Spectrum monitoring. Estimation of RF signal direction of arrival (DOA). Interferometry.		
12	Subspace based algorithms: MUSIC algorithm.		
	ESPRIT Algorithm.		
	Case study: Drone detection / Recapitulation		
	liography		
1.	C. Balanis, P. Ioannides, Introduction to Smart Antennas, N	Morgan & Claypool Publi	shers, 2007.
2.	J. Litva, Digital Beamforming in Wireless Communication		
3.	Series, 1996.	Wilow Series in Tologo	mmunications and
э.	Jian Li and Petre Stoica, <i>Robust Adaptive Beamforming,</i> Signal Processing, 2006.	whey Series in Teleco	minumications and
4.	Wei Liu and Stephan Weiss, Wideband Beamforming Co	oncepts and Techniques	s, Wiley Series on
_	Wireless Communications and Mobile Computing, 2010.		
5.	A. Manikas, <i>Beamforming Sensor Signal Processing for De</i> 2015.	tence Applications, Impe	erial College Press,
6.	T. Marzetta, E. Larsson, H. Yang, H. Ngo, <i>Fundamentals</i>	of Massive MIMO. Car	nbridge University
0.	Press, 2016.		
7.	R. Kshetrimayum, Fundamentals of MIMO Wireless Com	munications, Cambridge	e University Press,
	2017.	The share of the	N 1
8.2	Laboratory	Teaching methods	Notes
1.	Linux installation. Gnu Radio Installation. Gnu Radio tutorial, Python.		
2.	SDR architecture. HackRF, BladeRF, USRP. Installation of	Didactic and	Use of
	drivers, libraries, dependencies.	experimental	laboratory
3.	SDR programming. Receiver application. Comparative	demonstrations,	instrumentation,
	analysis of the performance parameters of SDRs.	didactic exercises,	SDR platforms +
	Spectrum monitoring.	simulations,	programming environment,
4.	Transmitter application. Packet transmission Tx-Rx.	teamwork.	computers
5.	MIMO 2x2 application. Synchronization.		computers
6.	Antenna array applications. DOA, MUSIC, ESPRIT.		

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

7. Antenna array applications. Beamforming.

Bibliography

1. Laboratory manual.

2. ***, https://wiki.gnuradio.org/index.php/Tutorials.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	ctivity type 10.1 Assessment criteria 10.2 Assessment methods							
10.4 Course	Solving 1 problem plus a set of theoretical questions.	Written exam	50%					
10.5 Seminar/ Laboratory	Checking the level of acquired knowledge and abilities	Laboratory tests during the semester	50%					
10.6 Minimum	standard of performance							
Qualitative poin	nt of view							
Minimal theore	tical and practical knowledge:							
🖌 🗸 To know	v fundamental concepts related to SDR architect	ure.						
🖌 🖌 To know								
🖌 🗸 To know	v the principles of current wireless communication	ons systems.						
🖌 🖌 To know	✓ To know the principles of antenna array-based technologies.							
Minimal acquire	ed competences:							
🖌 🗸 To be a	ble to install and configure at least one type of SI	DR.						
✓ To be able to design and implement an SDR application for spectral monitoring.								
Quantitative po		-						
🗸 Attendi	ng and completing all lab activities.							
🗸 🖌 At least	\checkmark At least 5 both for exam and lab.							
🗸 🖌 Final m	\checkmark Final mark = 0.5 x Exam + 0.5 x Lab.							

Date of filling in:	Responsible	Title First name SURNAME	Signature
20.06.2024	Course	Professor Emanuel PUSCHITA, Ph.D.	
	Applications	Professor Emanuel PUSCHITA, Ph.D.	

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Date of approval in the Council of the Communications Department 10.07.2024 Head of Communications Department Prof. Virgil DOBROTA, Ph.D.

Date of approval in the Council of the Faculty of Electronics, Telecommunications and Information Technology 11.07.2024 Dean Prof. Ovidiu POP, Ph.D.