

SYLLABUS

1. Study Program

1.1	Higher Education Institute	Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
		Technology
1.3	Department	Communications
1.4	Study domain	Electronics and Telecommunications Engineering
1.5	Study level	Master
1.6	Study program/ Qualification	Telecommunications/ Master
1.7	Type of education	IF (Full-time learning)
1.8	Discipline code	TC11.20

2. Discipline

2.1	Discipline name		Advanced Computer Architectures				
2.2	Subject area		Electronics and Telecommunications Engineering				
2.3	Responsible		Assistant Professor Ovidiu Buza, Ph.D.				
			<u>Ovidiu.Buza@com.utcluj.ro</u>				
2.4	Titular		Assistant Professor Ovidiu Buza, Ph.D.				
2.5	Year of study I 2.6 Semester	2	2.7 Evaluation Exam 2.8 Type of discipline				

3. Total estimated time

Year/ Sem	Discipline name	No. of weeks	Course	Appl	icatio	ons	Course	App	olicati	ons	Indiv. study	OTAL	ECTS
			[hou	rs/we	ek]		[houi	rs/we	ek]		F	
			С	S	L	Ρ		S	L	Ρ			
I/2	Advanced Computer Architectures	14	2	0	1	0	28	0	14	0	58	100	4

3.1	Number of hours per week	3	3.2	course	2	3.3	applications	1
3.4	Total hours per curriculum	42	3.5	course	28	3.6	applications	14
Indivi	idual study							Hours
Study	y based on manuals, course ma	aterials	s, refere	nces and notes				14
Supp	lementary documentation in lib	raries,	electro	nic platforms and	on fie	eld		10
Prepa	aration of seminars/laboratories	, hom	eworks,	essays, portfolios	;			10
Tutor	Tutorial work						8	
Assesments						4		
Othe	Other activities				12			
3.7	Total hours of individual study	,	58					
3.8	Total hours per semester		100					
3.9								

4. Prerequisites (if necessary)

		<i>j</i> /
4.1	Curriculum	
4.2	Competences	

5. Requisites (if necessary)

5.1	Course	Video-projector, screen, whiteboard
5.2	Applications	Local network with Internet access, Visual C++, PVM, Condor

6. Specific competences acquired

r		
	±	The students will acquire knowledge about:
	Theoretical knowledge (What do the student should know)	- basic concepts of computer architecture;
	stl	 methods for computer performance evaluation; advanced techniques in designing computer central units;
	× he	- architecture of computer systems: principles, current and perspective
	dge kno	developments;
	/lec at c ld l	- high performance architectures; parallel and distributed architectures;
	Theoretical knowledge (What do th should kno	- operating systems and programming standards for parallel architectures
	도코오호	
ŝ	ę	The students will be able to:
Professional competences	Acquired skills (What the student is able to do)	- implement programs in Visual C under Windows 32-bit;
eter	at	 use programming techniques based on events and messages;
be	Itis	 use structures and specific classes for programming under Windows 32-bit;
lõ	der	 set up and programming a parallel virtual machine;
<u>a</u>	skills stuo	- implement various logical topologies on a parallel virtual machine;
ů	l sl le s	- realise of multitask programs on the parallel virtual machine;
ssi	t th	 work with and implement concurrent and parallel programming techniques; implement parallel algorithms;
ofe	Acquired (What the do)	- work with grid computing techniques
д	do) Acc	- work with grid computing teerinques
	S S S	The students will be able to use:
	llities nent/ softwares s able to	
	es offv able	- Visual C under Windows 32-bit;
	Acquired abilities (what equipment/ nstruments/ soft/ the student is abl nandle)	- parallel programming environments like PVM and Condor
	Acquired abili (what equipm instruments/ s the student is handle)	
	ed ed ed	
	Acquired (what equiner instrumer the stude handle)	
	Ac (wl the hai	
	(A)	CT3 Adapting to new technologies, professional and personal development
	Cet	through continuing education using electronic documentation and printed sources,
Transversal competences		in Romanian and in at least one international language (English). Competencies
		for analysis and synthesis and optimization systems thinking. Flexibility in thinking and ability to work with interdisciplinary concepts and tools.
		מות מאווגע נט אטרג אונו ווונפותוסטףווומוץ נטוונפרג מות נטטוס.
	0	

7. Discipline objectives (based on the grid of specific competences acquired)

7.1	General objective	Acquiring knowledge in the field of computer architectures
7.2	Specific objectives	 acquiring basic and specific knowledge of computer architecture; knowledge of the current and future principles in computer systems design; knowledge of high-performance, parallel and distributed computer architectures; acquiring knowledge about operating systems and programming standards for parallel architectures; knowing how to realise and work with a parallel virtual machine; acquiring basic knowledge about Grid computing

8. Contents

8.1. Co	burse (titles)	Teaching methods	Obser- vations	
1	Introduction. History; virtual machine; languages; taxonomy of computer architectures; processor families; performance evaluation methods	mothodo	Valione	
2	Computer basic architecture. The central unit, memory, buses, controllers and components, input/ output devices			
3	Advanced techniques for central unit architecture design. The pipelined superscalar architecture; NetBurst architecture; Pentium processors family			
4	High performance architectures. Vector processors; MIMD and SIMD processors; RISC architectures; SPARC architectures			
5	Memory Systems. Types of memory; memory performance indicators; multiple memory units; associative memory; cache; virtual memory; memory modules design			
6	Interconnection networks. Direct networks; indirect networks; circuit- switching; packet switching; information routing techniques	ions		
7	Parallel and distributed architectures. Multiprocessor architecture; transputers; hypercubes; distributed systems; grid architecture; OCCAM specification	Presentation, discussions	Videoprojector	
8	SIMD systems. Array processors, vectorial processors, systolic systems	ation	deopi	
9	Multicomputers. Organization; message passing; massively parallel systems; COW multicomputers	esent	Ś	
10	Multiprocessor systems. Structure, consistency models for shared memory, network connections for multiprocessors	P		
11	Multiprocessors with uniform memory access (UMA). Specifications; symmetric multiprocessors; UMA multiprocessors based on grid switches			
12	Multiprocessors with non-uniform memory access (NUMA). Specifications; NC_NUMA multiprocessors; CC_NUMA multiprocessors; COMA multiprocessors			
13	Operating systems and programming techniques for multiprocessors; concurency exploitation, detection of parallelism inside programs, synchronization mechanisms, examples			
14	Standards and programming environments for parallel architectures. MPI standard, PVM environment, OCCAM language, intelligent agents			
8.2. Ap	oplications (laboratory work)	Teaching methods	Obser- vations	
1	The defining elements of 32-bit programming	monouo	rationio	
2	Structures and classes used in Windows 32-bit programming			
3	Introduction to PVM; building a parallel virtual machine	Programming, experiments		
4	Functions for message passing and task control	me		
5	Functions for processes groups in PVM	eri	¥	
6	Implementation of Cannon's algorithm using PVM library (I)	dxi	/orl	
7	Implementation of Cannon's algorithm using PVM library (II)	, e	PC network	
8	Introduction to grid computing	inc	Ĕ	
9	Programs execution in Condor (I)	ш	РС	
10	Programs execution in Condor (II)	ran		
11	Workflows in Condor	bo		
12	Other examples of parallel algorithms	Ъ.		
13	Applications on parallel architectures			
14	Laboratory test			

References:

1. J. L. Hennessy, D. A. Patterson , *Computer Architecture, Fifth Edition: A Quantitative Approach* (The Morgan Kaufmann Series in Computer Architecture and Design), Elsevier, 2012, ISBN-10: 012383872X

- 2. G. Lerman, L. Rudolph, *Parallel Evolution of Parallel Processors* (Evaluation in Education and Human Services), Springer, 2013, ISBN-13: 978-1461362371
- 3. D. B. Kirk, W. W. Hwu, *Programming Massively Parallel Processors, Second Edition: A Hands-on Approach*, Elsevier, 2012, ISBN-10: 0124159923
- 4. Shane Cook, CUDA Programming: A Developer's Guide to Parallel Computing with GPUs (Applications of GPU Computing Series), Elsevier, 2013, ISBN-10: 0124159338
- 5. C. Lin, L. Snyder, *Principles of Parallel Programming*, Addison-Wesley, 2008, ISBN-13: 978-0321487902
- 6. G. Sebestyen, Informatică industrială, Ed. Albastră, Cluj-Napoca, 2006
- 7. Z.F.Baruch, Structura sistemelor de calcul. Editura Albastră, Cluj-Napoca, 2005
- 8. B.B.Brey, Intel 32-Bit Microprocessor: 80386, 80486 & Pentium, Prentice Hall; 7thEd 2005
- 9. D.Gorgan, G. Sebestyen, Proiectarea calculatoarelor, Ed. Albastră, Cluj-Napoca, 2005
- 10. D.A.Patterson, J.L.Hennessy, *Computer Organization and Design: The Hardware/ Software Interface*, 3rd Edition, Morgan Kaufmann Publishers, August 2004
- 11. D.E. Comer, *Essentials of Computer Architecture*, Prentice Hall; US edition, August 2004

9. Discipline content corroborated with the expectations of the epistemic community representatives, associations, professional and related program employers

Acquired skills will be needed in the following possible COR occupations: electronics engineer, telecommunications engineer, system and computer design engineer, or new occupations proposed to be included in COR (network operating engineer, test engineer, traffic engineer, communications system consultant).

10. Assessment

Type of activity	10.1	Evaluation criteria	10.2	Evaluation method	10.3	The weight of the final grade
Course		Exam (E = 110)		Written test		50%
		Scientific essay (S = 110)		Scientific essay presented by each student		25%
Applicatio ns		Laboratory test (L = 1 10)		Written test at the end of semester		25%
10.4 Minin	num p	erformance standard				
The final gr	ade (N	l) is calculated as follows:				
		N = 0,5E+0,25L+0,25S				
The conditi or equal to		obtaining the ECTS credits).	is that a	all components of the fina	al grade	e to be higher than

Date	Titular
24.06.2018	Assistant Professor
	Ovidiu Buza, Ph.D.

Responsible Assistant Professor Ovidiu Buza, Ph.D.

Date of approval 24.06.2018

Head of Department Professor Virgil Dobrota, Ph.D.